Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The impact of agricultural soil erosion on biogeochemical cycling

Subjects

Abstract

Soils are the main terrestrial reservoir of nutrients, such as nitrogen and phosphorus, and of organic carbon. Synthesizing earlier studies, we find that the mobilization and deposition of agricultural soils can significantly alter nutrient and carbon cycling. Specifically, erosion can result in lateral fluxes of nitrogen and phosphorus that are similar in magnitude to those induced by fertilizer application and crop removal. Furthermore, the translocation and burial of soil reduces decomposition of soil organic carbon, and could lead to long-term carbon storage. The cycling of carbon, nitrogen and phosphorus are strongly interrelated. For example, erosion-induced burial of soils stabilizes soil nutrient and carbon pools, thereby increasing primary productivity and carbon uptake, and potentially reducing erosion. Our analysis shows soils as dynamic systems in time and space.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Global fluxes of sediment, nitrogen and phosphorus.
Figure 2: Interplay between soil erosion, land use/soil management and carbon cycling at sites of erosion.

References

  1. Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Article  Google Scholar 

  2. Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).

    Article  Google Scholar 

  3. Stallard, R. F. Terrestrial sedimentation and the carbon cycling: coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 12, 231–257 (1998).

    Article  Google Scholar 

  4. Batjes, N. H. ISRIC-WISE Global Data Set of Derived Soil Properties on a 0.5 by 0.5 Degree Grid (Version 3.0): Report 2005/08 (ISRIC–World Soil Information, 2005).

    Google Scholar 

  5. http://faostat.fao.org/

  6. Smil, V. Agriculture's largest harvest. BioScience 49, 299–308 (1999).

    Article  Google Scholar 

  7. Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W. & Bouwman, A. F. Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of global nutrient export from watersheds (NEWS) models and their application. Glob. Biogeochem. Cycles 19, GB4S01 (2005).

    Article  Google Scholar 

  8. Beusen, A. H. W., Dekkers, A. L. M., Bouwman, A. F., Ludwig, W. & Harrison, J. Estimation of global river transport of sediments and associated particulate C, N, and P. Glob. Biogeochem. Cycles 19, GB4S05 (2005).

    Article  Google Scholar 

  9. Smil, V. in Encyclopedia of Global Environmental Change: Volume 3, Causes and Consequences of Global Environmental Change (ed. Douglas, I.) 536–542 (Wiley, 2002).

    Google Scholar 

  10. Lal, R. Soil erosion and the global carbon budget. Environ. Int. 29, 437–450 (2003).

    Article  Google Scholar 

  11. Van Oost, K. et al. The impact of agricultural soil erosion on the global carbon cycle. Science 318, 626–629 (2007).

    Article  Google Scholar 

  12. Van Hemelryck, H., Fiener, P., Van Oost, K. & Govers, G. The effect of soil redistribution on soil organic carbon: an experimental study. Biogeosciences Discuss. 6, 5031–5071 (2009).

    Article  Google Scholar 

  13. Cole, J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172–185 (2007).

    Article  Google Scholar 

  14. van de Koppel, J., Rietkerk, M. & Weissing, F. J. Catastrophic vegetation shifts and soil degradation in terrestrial grazing systems. Trends Ecol. Evol. 12, 352–356 (1997).

    Article  Google Scholar 

  15. Berhe, A., Harte, J., Harden, J. & Torn, M. The significance of the erosion-induced terrestrial carbon sink. BioScience 57, 337–346 (2007).

    Article  Google Scholar 

  16. Harden, J. W. et al. Dynamic replacement and loss of soil carbon on eroding cropland. Glob. Biogeochem. Cycles 13, 885–901 (1999).

    Article  Google Scholar 

  17. Rosenbloom, N. A., Harden, J. W., Neff, J. C. & Schimel, D. S. Geomorphic control of landscape carbon accumulation. J. Geophys. Res. 111, G01004 (2006).

    Article  Google Scholar 

  18. Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007).

    Article  Google Scholar 

  19. Gabet, E. J. & Mudd, S. M. A theoretical model coupling chemical weathering rates with denudation rates. Geology 37, 151–154 (2009).

    Article  Google Scholar 

  20. Riebe, C., Kirchner, J., Granger, D. & Finkel, R. Strong tectonic and weak climatic control of long-term chemical weathering rates. Geology 29, 511–514 (2001).

    Article  Google Scholar 

  21. Jacinthe, P. A., Lal, R. & Kimble, J. M. Carbon dioxide evolution in runoff from simulated rainfall on long-term no-till and plowed soils in southwestern Ohio. Soil Till. Res. 66, 23–33 (2002).

    Article  Google Scholar 

  22. Inoue, Y., Baasansuren, J. Watanabe, M., Kamei, H. & Lowe, D. J. Interpretation of pre-AD 472 Roman soils from physicochemical and mineralogical properties of buried tephric paleosols at Somma Vesuviana ruin, southwest Italy. Geoderma 152, 243–251 (2009).

    Article  Google Scholar 

  23. van Groenigen, K.-J. et al. Element interactions limit soil carbon storage. Proc. Natl Acad. Sci. USA 103, 6571–6574 (2006).

    Article  Google Scholar 

  24. Rao, W., Chen, J., Luo, T. & Liu, L. Phosphorus geochemistry in the Luochuan loess section, North China and its paleoclimatic implications. Quat. Int. 144, 72–83 (2006).

    Article  Google Scholar 

  25. Filippelli, G. M. The global phosphorus cycle: Past, present, and future. Elements 4, 89–95 (2008).

    Article  Google Scholar 

  26. Chadwick, O., Derry, L., Vitousek, P., Huebert, B. & Hedin, L. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999).

    Article  Google Scholar 

  27. Stocking, M. A. Tropical soils and food security: The next 50 years. Science 302, 1356–1359 (2003).

    Article  Google Scholar 

  28. Sharpley, A. N. The selective erosion of plant nutrients in runoff. Soil Sci. Soc. Am. J. 49, 1527–1534 (1985).

    Article  Google Scholar 

  29. Tisdall, J. & Oades, J. Organic matter and water-stable aggregates in soils. J. Soil Sci. 33, 141–163 (1982).

    Article  Google Scholar 

  30. Elwell, H. & Stocking, M. Vegetal cover to estimate soil erosion hazard in Rhodesia. Geoderma 15, 61–70 (1976).

    Article  Google Scholar 

  31. Woodward, F. I., Bardgett, R. D., Raven, J. A. & Hetherington, A. M. Biological approaches to global environment change mitigation and remediation. Curr. Biol. 19, 615–623 (2009).

    Article  Google Scholar 

  32. Reay, D., Dentener, F., Smith, P., Grace, J. & Feely, R. Global nitrogen deposition and carbon sinks. Nature Geosci. 1, 430–437 (2008).

    Article  Google Scholar 

  33. Kaye, J. P. & Hart, S. C. Competition for nitrogen between plants and soil microorganisms. Trends Ecol. Evol. 12, 139–143 (1997).

    Article  Google Scholar 

  34. Bardgett, R. D. The Biology of Soil: A Community and Ecosytems Approach 1st edn (Oxford Univ. Press, 2005).

    Book  Google Scholar 

  35. Wardle, D. A., Walker, L. R. & Bardgett, R. D. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305, 509–513 (2004).

    Article  Google Scholar 

  36. Wardle, D. A., Bardgett, R. D., Walker, L. R. & Bonner, K. Among- and within-species variation in plant litter decomposition in contrasting long-term chronosequences. Funct. Ecol. 23, 442–453 (2009).

    Article  Google Scholar 

  37. Bakker, M. M. et al. Soil erosion as a driver of land-use change. Agr. Ecosyst. Environ. 105, 467–481 (2005).

    Article  Google Scholar 

  38. Feddema, J. J. et al. The importance of land-cover change in simulating future climates. Science 310, 1674–1678 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

K.V.O is a research associate of the Fonds de la Recherche Scientifique (FNRS), Belgium, and is supported by the Communauté Française de Belgique (convention number 09/14-022).

Author information

Authors and Affiliations

Authors

Contributions

J.Q. led the writing of the paper. K.V.O. conducted the model simulations and contributed to the writing, together with G.G. and R.B.

Corresponding author

Correspondence to John N. Quinton.

Supplementary information

Supplementary Information

Supplementary Information (PDF 402 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Quinton, J., Govers, G., Van Oost, K. et al. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci 3, 311–314 (2010). https://doi.org/10.1038/ngeo838

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo838

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing