Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nitrogen-enhanced greenhouse warming on early Earth

Abstract

Early in Earth’s history, the Sun provided less energy to the Earth than it does today. However, the Earth was not permanently glaciated, an apparent contradiction known as the faint young Sun paradox. By implication, the Earth must have been warmed by a stronger greenhouse effect or a lower planetary albedo. Here we use a radiative–convective climate model to show that more N2 in the atmosphere would have increased the warming effect of existing greenhouse gases by broadening their absorption lines. With the atmospheric CO2 and CH4 levels estimated for 2.5 billion years ago, a doubling of the present atmospheric nitrogen (PAN) level would cause a warming of 4.4 C. Our new budget of Earth’s geological nitrogen reservoirs indicates that there is a sufficient quantity of nitrogen in the crust (0.5 PAN) and mantle (>1.4 PAN) to have supported this, and that this nitrogen was previously in the atmosphere. In the mantle, N correlates with 40Ar, the daughter product of 40K, indicating that the source of mantle N is subducted crustal rocks in which NH4+ has been substituted for K+. We thus conclude that a higher nitrogen level probably helped warm the early Earth, and suggest that the effects of N2 should be considered in assessing the habitable zone for terrestrial planets.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Temperature change with increased nitrogen inventory from RCM runs.
Figure 2: Radiative effects of pressure broadening and Rayleigh scattering.
Figure 3: Lapse rate feedback.

References

  1. Sagan, C. & Mullen, G. Earth and Mars: Evolution of atmospheres and surface temperatures. Science 177, 52–56 (1972).

    Google Scholar 

  2. Kuhn, W. R. & Atreya, S. K. Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the Earth. Icarus 37, 207–213 (1979).

    Google Scholar 

  3. Owen, T., Cess, R. D. & Ramanathan, V. Enhanced CO2 greenhouse to compensate for reduced solar luminosity on early Earth. Nature 277, 640–642 (1979).

    Google Scholar 

  4. Sheldon, N. D. Precambrian paleosols and atmospheric CO2 levels. Precambr. Res. 147, 148–155 (2006).

    Google Scholar 

  5. Pavlov, A. A., Kasting, J. F., Brown, L. L., Rages, K. A. & Freedman, R. Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res. 105, 11981–11990 (2000).

    Google Scholar 

  6. Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J. & Kasting, J. F. A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8, 1127–1137 (2008).

    Google Scholar 

  7. Buick, R. Did the Proterozoic ‘Canfield Ocean’ cause a laughing gas greenhouse? Geobiology 5, 97–100 (2007).

    Google Scholar 

  8. Kasting, J. F., Whitmere, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108–128 (1993).

    Google Scholar 

  9. Ramanathan, V. & Coakley, J. A. Jr Climate modeling through radiative-convective models. Rev. Geophys. Space Phys. 16, 465–489 (1978).

    Google Scholar 

  10. Holland, H. D. The Chemistry of the Atmosphere and Oceans (Wiley, 1978).

    Google Scholar 

  11. Boyd, S. R. Nitrogen in future biosphere studies. Chem. Geol. 176, 1–30 (2001).

    Google Scholar 

  12. Holloway, J. M. & Dahlgren, R. A. Nitrogen in rock: Occurrences and biogeochemical implications. Glob. Biogeochem. Cycles 16, 1118 (2002).

    Google Scholar 

  13. Wlotzka, F. in Handbook of Geochemistry II (ed. Wedepohl, K. H.) 7B1–7O3 (Springer, 1972).

    Google Scholar 

  14. Wedepohl, K. H. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995).

    Google Scholar 

  15. Veizer, J. & Mackenzie, F. T. in Treatise on Geochemistry Vol. 7 (eds Holland, H. D. & Turekian, K. K.) 369–407 (Elsevier, 2003).

    Google Scholar 

  16. Amiotte Suchet, P., Probst, J.-L. & Ludwig, W. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob. Biogeochem. Cycles 17, 1038 (2003).

    Google Scholar 

  17. Li, L. & Bebout, G. E. Carbon and nitrogen geochemistry of sediments in the Central American convergent margin: Insights regarding subduction input fluxes, diagenesis, and paleoproductivity. J. Geophys. Res. 110, B11202 (2005).

    Google Scholar 

  18. Sullivan, P. J., Sposito, G., Strathouse, S. M. & Hansen, C. L. Geologic nitrogen and the occurrence of high nitrate soils in the western San Joaquin Valley, California. Hilgardia 47, 15–49 (1979).

    Google Scholar 

  19. Hall, A. Ammonium in granites and its petrogenetic significance. Earth. Sci. Rev. 45, 145–165 (1999).

    Google Scholar 

  20. Taylor, S. R. & McLennan, S. M. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–265 (1995).

    Google Scholar 

  21. Rudnick, R. L. & Gao, S. in Treatise on Geochemistry Vol. 3 (eds Holland, H. D. & Turekian, K. K.) 1–64 (Elsevier, 2003).

    Google Scholar 

  22. Busigny, V., Cartigny, P., Philippot, P., Ader, M. & Javoy, M. Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: Evidence from HP to UHP oceanic metasediments of the Schistes Lustrs nappe (western Alps, Europe). Earth Planet. Sci. Lett. 215, 27–42 (2003).

    Google Scholar 

  23. Mingram, B. & Bräuer, K. Ammonium concentration and nitrogen isotope composition in metasedimentary rocks from different tectonometamorphic units of the European Variscan Belt. Geochim. Cosmochim. Acta 65, 273–287 (2001).

    Google Scholar 

  24. Bebout, G. E., Ryan, J. G., Leeman, W. P. & Bebout, A. E. Fractionation of trace elements by subduction-zone metamorphism—effect of convergent-margin thermal evolution. Earth Planet. Sci. Lett. 171, 63–81 (1999).

    Google Scholar 

  25. Li, L., Bebout, G. E. & Idleman, B. D. Nitrogen concentration and δ15N of altered oceanic crust obtained on ODP Legs 129 and 185: Insights into alteration-related nitrogen enrichment and the nitrogen subduction budget. Geochim. Cosmochim. Acta 71, 2344–2360 (2007).

    Google Scholar 

  26. Hawkesworth, C. J. & Kemp, A. I. S. Evolution of the continental crust. Nature 443, 811–817 (2006).

    Google Scholar 

  27. Tolstikhin, I. N. & Marty, B. The evolution of terrestrial volatiles: A view from helium, neon, argon and nitrogen isotope modelling. Chem. Geol. 147, 27–52 (1998).

    Google Scholar 

  28. Marty, B. & Dauphas, N. The nitrogen record of crust–mantle interaction and mantle convection from Archean to Present. Earth Planet. Sci. Lett. 206, 397–410 (2003).

    Google Scholar 

  29. Tappert, R. et al. Diamonds from Jagersfontein (South Africa): Messengers from the sublithospheric mantle. Contrib. Mineral. Petrol. 150, 505–522 (2005).

    Google Scholar 

  30. Cartigny, P., Harris, J. W. & Javoy, M. Diamond genesis, mantle fractionations and mantle nitrogen content: A study of δ13C–N concentrations in diamonds. Earth Planet. Sci. Lett. 185, 85–98 (2001).

    Google Scholar 

  31. Beaumont, V. & Robert, F. Nitrogen isotope ratios of kerogens in Precambrian cherts: A record of the evolution of atmosphere chemistry? Precambr. Res. 96, 63–82 (1999).

    Google Scholar 

  32. Philippot, P., Busigny, V., Scambelluri, M. & Cartigny, P. Oxygen and nitrogen isotopes as tracers of fluid activities in serpentinites and metasediments during subduction. Mineral. Petrol. 91, 11–24 (2007).

    Google Scholar 

  33. Hilton, D. R., Fischer, T. P. & Marry, B. Noble gases and volatile recycling at subduction zones. Rev. Mineral. Geochem. 47, 319–370 (2002).

    Google Scholar 

  34. Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998).

    Google Scholar 

  35. Konovalov, S. K., Murray, J. W., Luther, G. W. & Tebo, B. M. Processes controlling the redox budget for the oxic/anoxic water column of the Black Sea. Deep-Sea Res. II 53, 1817–1841 (2006).

    Google Scholar 

  36. De Ronde, C. E. J., Channer, D. M. deR., Faure, C. J., Bray, K. & Spooner, E. T. C. Fluid chemistry of Archean seafloor hydrothermal vents: Implications for the composition of circa 3.2 Ga seawater. Geochim. Cosmochim. Acta 61, 4025–4042 (1997).

    Google Scholar 

  37. Goldblatt, C., Lenton, T. M. & Watson, A. J. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443, 683–686 (2006).

    Google Scholar 

  38. Manabe, S. & Wetherald, R. D. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241–259 (1967).

    Google Scholar 

  39. Edwards, J. M. & Slingo, A. Studies with a flexible new radiation code. I: Choosing a configuration for a large scale model. Q. J. R. Meteorol. Soc. 122, 689–719 (1996).

    Google Scholar 

  40. Kasting, J. F., Pollack, J. B. & Crisp, D. Effects of high CO2 levels on surface temperature and atmospheric oxidation-state of the early Earth. J. Atmos. Chem. 1, 403–428 (1984).

    Google Scholar 

  41. Jain, A. K., Briegleb, B. P., Minschwaner, K. & Wuebbles, D. J. Radiative forcings and global warming potentials of 39 greenhouse gases. J. Geophys. Res. 105, 20773–20790 (2000).

    Google Scholar 

  42. Goldblatt, C. Bistability of Atmospheric Oxygen, the Great Oxidation and Climate. PhD thesis, Univ. East Anglia (2008).

  43. Goldblatt, C., Lenton, T. M. & Watson, A. J. An evaluation of the longwave radiative transfer code used in the Met Office Unified Model. Q. J. R. Meteorol. Soc. 135, 619–633 (2009).

    Google Scholar 

  44. Clough, S. A. et al. Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Ra. 91, 233–244 (2005).

    Google Scholar 

  45. Hyde, W. T., Crowley, T. J., Baum, S. K. & Peltier, W. R. Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature 405, 425–429 (2000).

    Google Scholar 

  46. Bahcall, J. N., Pinsonneault, M. H. & Basu, S. Solar models: Current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 555, 990–1012 (2001).

    Google Scholar 

  47. Sbordone, L., Bonifacio, P., Castelli, F. & Kurucz, R. L. ATLAS and SYNTHE under Linux. Mem. Soc. Astron. Ital. Supp. 5, 93 (2004).

    Google Scholar 

  48. Castelli, F. & Kurucz, R. L. in Modelling of Stellar Atmospheres, IAU Symposium Vol. 210 (eds Piskunov, N., Weiss, W. W. & Gray, D. F.) 20P (Astronomical Society of the Pacific, 2003).

    Google Scholar 

  49. Arevalo, Ricardo Jr, McDonough, W. F. & Luong, M. The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution. Earth Planet. Sci. Lett. 278, 361–269 (2009).

    Google Scholar 

  50. Adler, J. F. & Williams, Q. A high-pressure X-ray diffraction study of iron nitrides: Implications for Earth’s core. J. Geophys. Res. 110, B01203 (2005).

    Google Scholar 

Download references

Acknowledgements

We thank the Met Office for providing us access to the Edwards-Slingo radiation code. We thank R. Buick, D. Catling, R. von Glasow, R. Haberle, J. Kirschvink, J. Manners, E. Nisbet, R. Pierrehumbert, N. Sleep and Q. Williams for discussions and R. Haberle, K. Cahoy and J. Lissauer for comments on the manuscript. C.G. was financially supported by a NASA Postdoctoral Program fellowship. T.M.L.’s contribution was part of the NERC Feedbacks QUEST project (NE/F001657/1), which partly supported C.G.’s contribution. K.J.Z. was supported by the NASA Exobiology programme. M.W.C. received support from the NAI Virtual Planetary Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

C.G., T.M.L and A.J.W. suggested the study. C.G. wrote the RCM and carried out all model runs. C.G., A.J.M. and T.M.L. analysed the climate results. C.G. and K.J.Z. developed the nitrogen budget. M.W.C. calculated the changed solar flux.

Corresponding author

Correspondence to Colin Goldblatt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldblatt, C., Claire, M., Lenton, T. et al. Nitrogen-enhanced greenhouse warming on early Earth. Nature Geosci 2, 891–896 (2009). https://doi.org/10.1038/ngeo692

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo692

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing