Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emerging geothermometers for estimating slab surface temperatures

Abstract

Soon after its creation, the upper part of the oceanic lithosphere becomes hydrated owing to prolonged interaction with sea water. As oceanic slabs sink into the mantle at subduction zones and experience increasing temperatures and pressures, they dehydrate and release fluids. Such slab fluids drive mantle melting and return ocean water to the Earth's surface through arc volcanism. The efficiency of this process, as well as the chemical make-up of slab fluids, depends on the pressure and temperature conditions experienced by the slabs as they subduct. A growing body of experimental data provides the basis for new geothermometers (for example the ratio of water to cerium) that, when combined with data from melt inclusions in volcanic crystals, predict that slab-fluid temperatures vary from 750 to 950 °C for different subduction zones. Such high values indicate that fluids that exit the slab when it is below the arc are likely to be like melts or solute-rich fluids. Slab surface temperatures inferred from these geothermometers are at the upper end of those predicted by thermal models, implying that fluids could be released at relatively shallow depths and efficiently returned to the surface.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The effect of temperature on LREE and H2O content of slab fluids.
Figure 2: Slab-fluid thermometers.
Figure 3: Volatile concentrations in olivine-hosted melt inclusions.
Figure 4: Comparison of slab-fluid thermometer with thermal model.

References

  1. 1

    Hacker, B. H2O subduction beyond arcs. Geochem. Geophys. Geosys. 9, Q03001 (2008).

    Article  Google Scholar 

  2. 2

    Manning C. E. The chemistry of subduction-zone fluids (frontiers). Earth Planet. Sci. Lett. 223, 1–16 (2004).

    Article  Google Scholar 

  3. 3

    Schmidt, M. W., Vielzeuf, D. & Auzanneau, E. Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet. Sci. Lett. 228, 65–84 (2004).

    Article  Google Scholar 

  4. 4

    Hermann, J., Spandler, C., Hack, A. & Korsakov, A. V. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos 92, 399–417 (2006).

    Article  Google Scholar 

  5. 5

    Kessel, R., Ulmer, P., Pettke, T., Schmidt, M. W. & Thompson, A. B. The water-basalt system at 4 to 6GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400 °C. Earth Planet. Sci. Lett. 237, 873–892 (2005).

    Article  Google Scholar 

  6. 6

    Gill, J. Orogenic Andesites and Plate Tectonics (Springer, 1981).

    Book  Google Scholar 

  7. 7

    Elliott, T. R. in Inside the Subduction Factory (ed. Eiler, J. M.) 23–45 (Geophysical Monograph Series Vol. 138, AGU, 2003).

    Book  Google Scholar 

  8. 8

    Pearce, J. A., Stern, R. J., Bloomer, S. H. & Fryer, P. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochem. Geophys. Geosys. 6, Q07006 (2005).

    Article  Google Scholar 

  9. 9

    Grove, T. L., Parman, S. W., Bowring, S. A., Price, R. C. & Baker, M. B. The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib. Mineral. Petr. 142, 375–396 (2002).

    Article  Google Scholar 

  10. 10

    Eiler, J. M., Carr, M. J., Reagan, M. & Stolper, E. Oxygen isotope constraints on the sources of Central American arc lavas. Geochem. Geophys. Geosys. 6, Q07007 (2005).

    Article  Google Scholar 

  11. 11

    Portnyagin, M., Hoernle, K., Plechov, P., Mironov, N. & Khubunaya S. Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet. Sci. Lett. 255, 53–69 (2007).

    Article  Google Scholar 

  12. 12

    McDade, P., Blundy, J. D. & Wood, B. J. Trace element partitioning between mantle wedge peridotite and hydrous MgO-rich melt. Am. Mineral. 88, 1825–1831 (2003).

    Article  Google Scholar 

  13. 13

    Peacock, S. M., Rushmer, T. & Thompson, A. B. Partial melting of subducted oceanic crust. Earth Planet. Sci. Lett. 121, 227–244 (1994).

    Article  Google Scholar 

  14. 14

    van Keken, P. E., Kiefer, B. & Peacock, S. M. High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem. Geophys. Geosys. 3, 1056 (2002).

    Article  Google Scholar 

  15. 15

    Kelemen, P. B., Rilling, J. L., Parmentier, E. M., Mehl, L. & Hacker, B. R. in Inside the Subduction Factory (ed. Eiler, J. M.) 293–311 (Geophysical Monograph Series Vol. 138, AGU, 2003).

    Book  Google Scholar 

  16. 16

    Arcay, D., Tric, E. & Doin, M.-P. Slab surface temperature in subduction zones: Influence of the interplate decoupling depth and upper plate thinning processes. Earth Planet. Sci. Lett. 255, 324–338 (2007).

    Article  Google Scholar 

  17. 17

    Kincaid, C. & Griffiths, R. W. Variability in flow and temperature within mantle subduction zones. Geochem. Geophys. Geosys 5, Q06002 (2004).

    Article  Google Scholar 

  18. 18

    Castro, A. & Gerya, T. V. Magmatic implications of mantle wedge plumes: Experimental study. Lithos 103, 138–148 (2008).

    Article  Google Scholar 

  19. 19

    Peacock, S. M. in Inside the Subduction Factory (ed. Eiler, J. M.) 7–22 (Geophysical Monograph Series Vol. 138, AGU, 2003).

    Book  Google Scholar 

  20. 20

    Rupke, L. H., Phillps Morgan, J., Hort, M. & Connolly, J. A. C. Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett. 223, 17–34 (2004).

    Article  Google Scholar 

  21. 21

    Klimm, K., Blundy, J. D. & Green, T. H. Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. J. Petrol. 49, 523–553 (2008).

    Article  Google Scholar 

  22. 22

    Hermann, J. & Rubatto, D. Accessory phase control on the trace element signature of sediment melts in subduction zones. Chem. Geol. 265, 512–526 (2009).

    Article  Google Scholar 

  23. 23

    Antignano, A. & Manning, C. E. Rutile solubility in H2O, H2O-SiO2, and H2O NaAlSi3O8 fluids at 0.7–20 GPa and 700–1000 °C: Implications for mobility of nominally insoluble elements. Chem. Geol. 255, 283–293 (2008).

    Article  Google Scholar 

  24. 24

    Schmidt, M. W., Dardon, A., Chazot, G. & Vannucci, R. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth Planet. Sci. Lett. 226, 415–432 (2004).

    Article  Google Scholar 

  25. 25

    Hermann, J. & Spandler, C. J. Sediment melts at sub-arc depths: an experimental study. J. Petrol. 49, 717–740 (2008).

    Article  Google Scholar 

  26. 26

    Manning, C. E. Fluid composition at the blueschist-eclogite transition in the model system Na2O-MgO-Al2O3-SiO2-H2O-HCl. Schweiz. Miner. Petrog. 78, 225–242 (1998).

    Google Scholar 

  27. 27

    Dixon, J. E., Leist, L., Langmuir, C. & Schilling, J.-G. Recycled dehydratrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420, 385–389 (2002).

    Article  Google Scholar 

  28. 28

    Hauri, E. H., Gaetani, G. A. & Green, T. H. Partitioning of water during melting of the Earth's upper mantle at H2O-undersaturated conditions. Earth Planet. Sci. Lett. 248, 715 – 734 (2006).

    Article  Google Scholar 

  29. 29

    Wallace, P. J. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140, 217–240 (2005).

    Article  Google Scholar 

  30. 30

    Blundy, J., Cashman, K. & Humphreys, M. Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443, 76–80 (2006).

    Article  Google Scholar 

  31. 31

    Gorbatov, A. & Kostoglodov, V. Maximum depth of seismicity and thermal parameter of the subducting slab: General empirical relation and its application. Tectonophysics 277, 165–187 (1997).

    Article  Google Scholar 

  32. 32

    Syracuse, E. & Abers, G. Global compilation of variations in slab depthbeneath arc volcanoes and implications. Geochem. Geophys. Geosys. 7, Q05017 (2006).

    Article  Google Scholar 

  33. 33

    Pardo, M. & Suarez, G. Shape of the subducted Rivera and Cocos plates in southern Mexico: Seismic and tectonic implications. J. Geophys. Res. 100, 12357–12373 (1995).

    Article  Google Scholar 

  34. 34

    Cooper, L. Volatiles in Tonga Arc Magmas and Their Role in Unraveling Subduction Zone Processes. PhD thesis, Boston Univ. (2009).

    Google Scholar 

  35. 35

    Hirschmann, M. M. & Dasgupta, R. The H/C ratios of Earth's near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem. Geol. 262, 4–16 (2009).

    Article  Google Scholar 

  36. 36

    Tropper, P., Manning, C. E. & Harlov, D. E. Solubility of CePO4 and YPO4 in H2O, H2O-NaCl, H2O-NaF and H2O-Albite Fluids at 800 °C and 1 GPa: Implications for REE transport during subduction-zone metasomatism. AGU Fall Meet. abstr. V31D–2184 (2008).

  37. 37

    Kessel, R., Schmidt, M. W., Ulmer, P. & Pettke, T. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437, 724–727 (2005).

    Article  Google Scholar 

  38. 38

    Montel, J.-M. A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem. Geol. 110, 127–146 (1993).

    Article  Google Scholar 

  39. 39

    Cooper, L. et al. Boninites from the modern Tonga arc. J. Geophys. Res. (in the press).

  40. 40

    Cervantes, P. & Wallace, P. J. Role of H2O in subduction-zone magmatism: new insights from melt inclusions in high-Mg basalts from central Mexico. Geology 31, 235–238 (2003).

    Article  Google Scholar 

  41. 41

    Roberge, J., Delgado-Granados, H. & Wallace, P. J. Mafic magma recharge supplies high CO2 and SO2 gas fluxes from Popocatepetl volcano, Mexico. Geology 37, 107–110 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Hermann, P. Wallace and J. Roberge for unpublished data, and E. Syracuse for providing the thermal model in Fig. 4. We thank J. Hermann, M. Schmidt, P. Kelemen and E. Stolper for illuminating conversations, and J. Blundy, C. Spandler and D. Arcay for constructive reviews. This work is supported by the US National Science Foundation grants OCE-0526450 (T.P.) and EAR-0337170 (C.E.M.).

Author information

Affiliations

Authors

Contributions

T.P and C.E.M. developed the discussion of experimental data and slab fluid geothermometry models; L.B.C. assessed the arc melt inclusion data; T.P. took the lead in writing the paper, with substantial contributions from C.E.M. and L.B.C.

Corresponding author

Correspondence to Terry Plank.

Supplementary information

Supplementary Information

Supplementary Information (PDF 413 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Plank, T., Cooper, L. & Manning, C. Emerging geothermometers for estimating slab surface temperatures. Nature Geosci 2, 611–615 (2009). https://doi.org/10.1038/ngeo614

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing