Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identifying the causes of sea-level change

Abstract

Global mean sea-level change has increased from a few centimetres per century over recent millennia to a few tens of centimetres per century in recent decades. This tenfold increase in the rate of rise can be attributed to climate change through the melting of land ice and the thermal expansion of ocean water. As the present warming trend is expected to continue, global mean sea level will continue to rise. Here we review recent insights into past sea-level changes on decadal to millennial timescales and how they may help constrain future changes. We find that most studies constrain global mean sea-level rise to less than one metre over the twenty-first century, but departures from this global mean could reach several decimetres in many areas. We conclude that improving estimates of the spatial variability in future sea-level change is an important research target in coming years.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mean rate of sea-surface height change during October 1992 to May 2007, determined from satellite altimetry measurements.
Figure 2: Sea-level curves derived from tide-gauge data using the 'virtual station' method95.
Figure 3: Relative sea level (RSL) reconstructed from the geological record at the five localities shown in the inset.

References

  1. 1

    Stern, N. The Economics of Climate Change: The Stern Review (Cambridge Univ. Press, 2007).

    Google Scholar 

  2. 2

    Meehl, G. A. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 747–845 (Cambridge Univ. Press, 2007).

    Google Scholar 

  3. 3

    Rahmstorf, S. A semi-empirical approach to projecting future sea-level rise. Science 315, 368–370 (2007).

    Google Scholar 

  4. 4

    Pfeffer, W. T., Harper, J. T. & O'Neel, S. Kinematic constraints on glacier contributions to 21st century sea-level rise. Science 321, 1340–1343 (2008).

    Google Scholar 

  5. 5

    Berger, W. H. Sea level in the late Quaternary: patterns of variation and implications. Int. J. Earth Sci. 97, 1143–1150 (2008).

    Google Scholar 

  6. 6

    Rohling, E. J. et al. High rates of sea-level rise during the last interglacial period. Nature Geosci. 1, 38–42 (2008).

    Google Scholar 

  7. 7

    Lombard, A. et al. Estimation of steric sea level variations from combined GRACE and Jason-1 data. Earth Planet. Sci. Lett. 254, 194–202 (2007).

    Google Scholar 

  8. 8

    Lyman, J. M., Willis, J. K. & Johnson, G. C. Recent cooling of the upper ocean. Geophys. Res. Lett. 33, L18604 (2006).

    Google Scholar 

  9. 9

    Gouretski, V. & Koltermann, K. P. How much is the ocean really warming? Geophys. Res. Lett. 34, L01610 (2007).

    Google Scholar 

  10. 10

    Willis, J. K., Lyman, J. K., Johnson, G. C. & Gilson, J. Correction to “Recent cooling of the upper ocean”. Geophys. Res. Lett. 34, L16601 (2007).

    Google Scholar 

  11. 11

    Wijffels, S. E. et al. Changing expendable bathythermograph fall-rates and their impact on estimates of thermosteric sea level rise. J. Clim. 21, 5657–5672 (2008).

    Google Scholar 

  12. 12

    Willis, J. K., Lyman, J. M., Johnson, C. G. & Gilson, J. In situ data biases and recent ocean heat content variability. J. Atmos. Ocean. Tech. 26, 846–852 (2009).

    Google Scholar 

  13. 13

    Dickey, J. O., Marcus, S. L. & Willis, J. K. Ocean cooling: Constraints from changes in Earth's dynamic oblateness (J2) and altimetry. Geophys. Res. Lett. 35, L18608 (2008).

    Google Scholar 

  14. 14

    Willis, J. K., Chambers, D. P. & Nerem, R. S. Assessing the globally-averaged sea level budget on seasonal to interannual timescales. J. Geophys. Res. 113, C06015 (2008).

    Google Scholar 

  15. 15

    Leuliette, E. W. & Miller, L. Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys. Res. Lett. 36, L04608 (2009).

    Google Scholar 

  16. 16

    Cazenave, A. et al. Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Global Planet. Change 65, 83–88 (2009).

    Google Scholar 

  17. 17

    Palmer, M. D., Haines, K., Tett, S. F. B. & Ansell, T. J. Isolating the signal of global warming. Geophys. Res. Lett. 34, L23610 (2007).

    Google Scholar 

  18. 18

    Chambers, D. P., Tamisiea, M. E., Nerem, R. S. & Ries, J. C. Effects of ice melting on GRACE observations of ocean mass trends. Geophys. Res. Lett. 34, L05610 (2007).

    Google Scholar 

  19. 19

    Swenson, S. & Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 33, L08402 (2006).

    Google Scholar 

  20. 20

    Chambers, D. P. Evaluation of new GRACE time-variable gravity data over the ocean. Geophys. Res. Lett. 33, L17603 (2006).

    Google Scholar 

  21. 21

    Swenson, S., Chambers, D. & Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. 113, B08410 (2008).

    Google Scholar 

  22. 22

    Mitchum, G. T. An improved calibration of satellite altimetric heights using tide gauge sea levels with adjustment for land motion. 23, 145–166 (2000).

  23. 23

    Leuliette, E. W., Nerem, R. S. & Mitchum, G. T. Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continuous record of mean sea level change. Mar. Geod. 27, 79–94 (2004).

    Google Scholar 

  24. 24

    Domingues, C. M. et al. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453, 1090–1094 (2008).

    Google Scholar 

  25. 25

    Woodworth, P. L. & Player, R. The permanent service for mean sea level: an update to the 21st century. J. Coastal Res. 19, 287–295 (2003).

    Google Scholar 

  26. 26

    Chao, B. F., Wu, Y. H. & Li, Y. S. Impact of artificial reservoir water impoundment on global sea level. Science 320, 212–214 (2008).

    Google Scholar 

  27. 27

    Mitrovica, J. X., Tamisiea, M. E., Davis, J. L. & Milne, G. A. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409, 1026–1029 (2001).

    Google Scholar 

  28. 28

    Plag, H. Recent relative sea-level trends: an attempt to quantify the forcing factors. Phil. Trans. R. Soc. A 364, 821–844 (2006).

    Google Scholar 

  29. 29

    Douglas, B. C. Concerning evidence for fingerprints of glacial melting. J. Coastal. Res. 24, 218–227 (2008).

    Google Scholar 

  30. 30

    Wunsch, C., Ponte, R. M. & Heimbach, P. Decadal trends in sea level patterns: 1993–2004 J. Clim. 20, 5889–5911 (2007).

    Google Scholar 

  31. 31

    Gregory, J. M., Banks, H. T, Stott, P. A., Lowe, J. A. & Palmer, M. D. Simulated and observed decadal variability in ocean heat content. Geophys. Res. Lett. 31, L15312 (2004).

    Google Scholar 

  32. 32

    Achuta Rao, K. M. et al. Simulated and observed variability in ocean temperature and heat content. Proc. Natl Acad. Sci. USA 204, 10768–10773 (2007).

    Google Scholar 

  33. 33

    Marcos, M. & Tsimplis, M. N. Forcing of coastal sea level rise patterns in the North Atlantic and the Mediterranean Sea. Geophys. Res. Lett. 34, L01604 (2007).

    Google Scholar 

  34. 34

    Cabanes, C., Huck, T. & de Verdiere, A. C. Contributions of wind forcing and surface heating to interannual sea level variations in the Atlantic Ocean. J. Phys. Oceanogr. 36, 1739–1750 (2006).

    Google Scholar 

  35. 35

    Stammer, D. Response of the global ocean to Greenland and Antarctic ice melting. J. Geophys. Res. 113, C06022 (2008).

    Google Scholar 

  36. 36

    Munk, W. Twentieth century sea level: an enigma. Proc. Natl Acad. Sci. USA 99, 6550–6555 (2002).

    Google Scholar 

  37. 37

    Mitrovica, J. X., Wahr, J., Matsuyama, I., Paulson, A. & Tamisiea, M. E. Reanalysis of ancient eclipse, astronomic and geodetic data: A possible route to solving the enigma of global sea-level rise. Earth. Planet. Sci. Lett. 243, 390–399 (2006).

    Google Scholar 

  38. 38

    Wöppelmann, G., Miguez, B. M., Bouin, M. & Altamimi, Z. Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide Glob. Planet. Change 57, 396–406 (2007).

    Google Scholar 

  39. 39

    Holgate, S. On the decadal rates of sea level change during the twentieth century. Geophys. Res. Lett. 34, L01602 (2007).

    Google Scholar 

  40. 40

    Miller, L. & Douglas, B. C. Gyre-scale atmospheric pressure variations and their relation to 19th and 20th century sea level rise. Geophys. Res. Lett. 34, L16602 (2007).

    Google Scholar 

  41. 41

    Woodworth, P. L. et al. Evidence for the accelerations of sea level on multi-decade and century timescales. Int. J. Climatol. 10.1002/joc.1771 (in the press).

  42. 42

    Shennan, I. & Horton, B. P. Holocene land- and sea-level changes in Great Britain. J. Quat. Sci. 17, 511–526 (2002).

    Google Scholar 

  43. 43

    Gehrels, W. R., Milne, G. A., Kirby, J. R., Patterson, R. T. & Belknap, D. F. Late Holocene sea-level changes and isostatic crustal movements in Atlantic Canada. Quat. Int. 120, 79–89 (2004).

    Google Scholar 

  44. 44

    Donnelly, J. P., Cleary, P., Newby, P. & Ettinger, R. Coupling instrumental and geological records of sea-level change: Evidence from southern New England of an increase in the rate of sea-level rise in the late 19th century. Geophys. Res. Lett. 31, L05203 (2004).

    Google Scholar 

  45. 45

    Gehrels, W. R. et al. Onset of recent rapid sea-level rise in the western Atlantic Ocean. Quat. Sci. Rev. 24, 2083–2100 (2005).

    Google Scholar 

  46. 46

    Gehrels, W. R., Hayward, B. W., Newnham, R. M. & Southall, K. E. A 20th century sea-level acceleration in New Zealand. Geophys. Res. Lett. 35, L02717 (2008).

    Google Scholar 

  47. 47

    Gehrels, W. R. et al. Rapid sea-level rise in the North Atlantic Ocean since the first half of the 19th century. Holocene 16, 948–964 (2006).

    Google Scholar 

  48. 48

    Clark, J. A., Farrell, W. E. & Peltier, W. R. Global changes in postglacial sea level: a numerical calculation. Quat. Res. 9, 265–287 (1978).

    Google Scholar 

  49. 49

    Peltier, W. R. Postglacial variations in the level of the sea: implications for climate dynamics and solid-earth geophysics. Rev. Geophys. 36, 603–689 (1998).

    Google Scholar 

  50. 50

    Lambeck, K. & Chappell, J. Sea level change through the last glacial cycle. Science 292, 679–686 (2001).

    Google Scholar 

  51. 51

    CLIMAP Project Members Seasonal reconstruction of the Earth's surface at the Last Glacial Maximum (Map Chart Ser. MC-36, Geol. Soc. Am., 1981).

  52. 52

    Mitrovica, J. X. & Milne, G. A. On the origin of late Holocene sea-level highstands within equatorial ocean basins. Quat. Sci. Rev. 21, 2179–2190 (2002).

    Google Scholar 

  53. 53

    Bard, E., Hamelin, B., Fairbanks, R. G. & Zindler, A. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals. Nature 345, 405–410 (1990).

    Google Scholar 

  54. 54

    Hanebuth, T., Stategger, K. & Grootes, P. Rapid flooding of the Sunda Shelf: A late-glacial sea-level record. Science 288, 1033–1035 (2000).

    Google Scholar 

  55. 55

    Carlson, A. E. et al. Rapid early Holocene deglaciation of the Laurentide ice sheet. Nature Geosci. 1, 620–624 (2008).

    Google Scholar 

  56. 56

    Jansen, E. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 433–497 (Cambridge Univ. Press, 2007).

    Google Scholar 

  57. 57

    Cuffey, K. M. & Marshall, S. J. Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature 404, 591–594 (2000).

    Google Scholar 

  58. 58

    Otto-Bliesner, B. L. et al. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311, 1751–1753 (2006).

    Google Scholar 

  59. 59

    Sherer, R. P. et al. Pleistocene collapse of the West Antarctic ice sheet. Science 281, 82–85 (1998).

    Google Scholar 

  60. 60

    Overpeck, J. T. et al. Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311, 1747–1750 (2006).

    Google Scholar 

  61. 61

    Dahl Jensen, D. et al. Past temperatures directly from the Greenland ice sheet. Science 282, 268–271 (1998).

    Google Scholar 

  62. 62

    Tarasov, L. & Peltier, W. R. Greenland glacial history and local geodynamic consequences. Geophys. J. Int. 150, 198–229 (2002).

    Google Scholar 

  63. 63

    Simpson, M. J. R., Milne G. A., Huybrechts, P. & Long. A. J. Calibrating a glaciological model of the Greenland ice sheet from the last glacial maximum to present-day using field observations of relative sea level and ice extent. Quat. Sci. Rev. (in the press).

  64. 64

    Gehrels, W. R. Sea-level changes since the Last Glacial Maximum: An appraisal of the IPCC Fourth Assessment Report. J. Quat. Sci. 10.1002/jqs.1273 (in the press).

  65. 65

    Bindoff, N. L. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 385–432 (Cambridge Univ. Press, 2007).

  66. 66

    Lambeck, K., Anzidei, M., Antonioli, F., Benini, A. & Esposito, A. Sea level in Roman time in the Central Mediterranean and implications for recent change. Earth Planet. Sci. Lett. 224, 563–575 (2004).

    Google Scholar 

  67. 67

    Nakada, M. & Lambeck, K. The melting history of the late Pleistocene Antarctic ice sheet. Nature 33, 36–40 (1988).

    Google Scholar 

  68. 68

    Long, A. J., Roberts, D. H. & Rasch, M. New observations on the relative sea level and deglacial history of Greenland from Innaarsuit, Disko Bugt. Quat. Res. 60, 162–171 (2003).

    Google Scholar 

  69. 69

    Mikkelsen, M., Kuijpers, A. & Arneborg, J. The Norse in Greenland and late Holocene sea-level change. Polar Rec. 44, 45–50 (2008).

    Google Scholar 

  70. 70

    Sparrenbom, C. J., Bennike, O., Björck, S. & Lambeck, K. Holocene relative sea-level changes in the Qaqortoq area, southern Greenland. Boreas 35, 171–187 (2006).

    Google Scholar 

  71. 71

    Weidick, A., Kelly, M. & Bennike, O. Late Quaternary development of the southern sector of the Greenland ice sheet, with particular reference to the Qassimiut lobe. Boreas 33, 284–299 (2004).

    Google Scholar 

  72. 72

    Das, S. B. & Alley, R. B. Rise in frequency of surface melting at Siple Dome through the Holocene: Evidence for increasing marine influence on the climate of West Antarctica. J. Geophys. Res. 113, D02112 (2008).

    Google Scholar 

  73. 73

    Stone, J. O. et al. Holocene deglaciation of Marie Byrd Land, West Antarctica. Science 299, 99–102 (2003).

    Google Scholar 

  74. 74

    Johnson, J. S., Bentley, M. J. & Gohl, K. First exposure ages from the Amundsen Sea embayment, West Antarctica: The late Quaternary context for recent thinning of Pine Island, Smith, and Pope Glaciers. Geology 36, 223–226 (2008).

    Google Scholar 

  75. 75

    Ivins, E. R. & James, T. S. Antarctic glacial isostatic adjustment: a new assessment. Antarct. Sci. 17, 541–553 (2005).

    Google Scholar 

  76. 76

    Gehrels, W. R. Middle and late Holocene sea-level changes in eastern Maine reconstructed from foraminiferal saltmarsh stratigraphy and AMS 14C dates on basal peat. Quat. Res. 52, 350–359 (1999).

    Google Scholar 

  77. 77

    Goodwin, I. D. & Harvey, N. Subtropical sea-level history from coral microatolls in the Southern Cook Islands, since 300 AD. Mar. Geol. 253, 14–25 (2008).

    Google Scholar 

  78. 78

    van de Plassche, O., van der Borg, K. & de Jong, A. F. M. Sea level-climate correlation during the past 1400 yr. Geology 26, 319–322 (1998).

    Google Scholar 

  79. 79

    Gehrels, W. R. et al. Late Holocene sea-level changes and isostasy in western Denmark. Quat. Res. 66, 288–302 (2006).

    Google Scholar 

  80. 80

    Brovkin, V., Kim, J.-H., Hofmann, M. & Schneider, R. A lowering effect of reconstructed Holocene changes in sea surface temperatures on the atmospheric CO2 concentration. Glob. Biogeochem. Cycles 22, GB1016 (2008).

    Google Scholar 

  81. 81

    Clark, P. U., Mitrovica, J. X., Milne, G. A. & Tamisiea, M. E. Sea-level fingerprinting as a direct test for the source of global meltwater pulse IA. Science 295, 2438–2441 (2002).

    Google Scholar 

  82. 82

    Katsman, C. A., Hazeleger, W., Drijfhout, S. S., van Oldenborgh, G. J. & Burgers, G. Climate scenarios of sea level rise for the northeast Atlantic Ocean: a study including the effects of ocean dynamics and gravity changes induced by ice melt. Climatic Change 91, 351–374 (2008).

    Google Scholar 

  83. 83

    Tornqvist, T. E., Bick, S. J., van der Borg, K. & de Jong, A. F. M. How stable is the Mississippi delta? Geology 34, 697–700 (2006).

    Google Scholar 

  84. 84

    Yin, J., Schlesinger, M. E. & Stouffer, R. J. Model projections of rapid sea-level rise on the northeast coast of the United States. Nature Geosci. 2, 262–266 (2009).

    Google Scholar 

  85. 85

    Mitrovica, J. X., Gomez, N. & Clark, P. U. The sea-level fingerprint of West Antarctic collapse. Science 323, 753 (2009).

    Google Scholar 

  86. 86

    Church, J. A. et al. Understanding global sea levels : past, present and future. Sustain. Sci. 3, 9–22 (2008).

    Google Scholar 

  87. 87

    Cazenave, A., Lombard, A. & Llovel, W. Present-day sea level rise: A synthesis. C. R. Geosci. 340, 761–770 (2008).

    Google Scholar 

  88. 88

    Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002).

    Google Scholar 

  89. 89

    Siddall, M. et al. Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003).

    Google Scholar 

  90. 90

    Arz, H. W., Lamy, F., Ganopolsky, A., Nowaczyk, N. & Pätzold, J. Dominant Northern Hemisphere climate control over millennial-scale glacial sea-level variability. Quat. Sci. Rev. 26, 312–323 (2007).

    Google Scholar 

  91. 91

    Fairbanks, R. G. A. 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 (1989).

    Google Scholar 

  92. 92

    Yokoyama, Y., Lambeck, K., de Deckker, P., Johnston, P. & Fifield, K. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713–716 (2000).

    Google Scholar 

  93. 93

    Shennan, I., Hamilton, S., Hillier, C., Woodroffe, S. A 16,000-year record of near-field relative sea-level changes, northwest Scotland, United Kingdom. Quat. Int. 133–134, 95–106 (2005).

    Google Scholar 

  94. 94

    Laborel, J. & Laborel-Deguen, F. Biological indicators of Holocene sea-level and climatic variations on rocky coasts of tropical and subtropical regions. Quat. Int. 31, 53–60 (1996).

    Google Scholar 

  95. 95

    Jevrejeva, S., Grinsted, A., Moore, J. C. & Holgate, S. J. Nonlinear trends and multiyear cycles in sea level records. J. Geophys. Res. 111, C09012 (2006).

    Google Scholar 

  96. 96

    Woodroffe, S. A. Testing models of mid to late Holocene sea-level change, North Queensland, Australia. Quat. Sci. Rev. j.quascirev.2009.05.004 (in the press).

  97. 97

    Lambeck, K., Smither, C. & Johnston, P. Sea-level change, glacial rebound and mantle viscosity for northern Europe. Geophys. J. Int. 134, 102–144 (1998).

    Google Scholar 

  98. 98

    Farrell, W. E. & Clark, J. T. On postglacial sea level. Geophys. J. R. Astron. Soc. 46, 647–667 (1976).

    Google Scholar 

  99. 99

    Tamisiea, M. E., Mitrovica, J. X., Davis, J. L. & Milne, G. A. Long wavelength sea level and solid surface perturbations driven by polar ice mass variations: fingerprinting Greenland and Antarctic ice sheet flux. Space Sci. Rev. 108, 81–93 (2003).

    Google Scholar 

  100. 100

    Berge-Nguyen, M. et al. Reconstruction of past decades sea level using thermosteric sea level, tide gauge, satellite altimetry and ocean reanalysis data. Glob. Planet. Change 62, 1–13 (2008).

    Google Scholar 

Download references

Acknowledgements

This article stemmed from a meeting hosted by the Geological Society of London in September 2008, and we express our gratitude to all who attended and particularly to those who gave presentations. We acknowledge support from the Geological Society, the Permanent Service for Mean Sea Level, the Royal Meteorological Society and the Challenger Society. This paper is a contribution to IGCP Project 495 (Late Quaternary Land–Ocean Interactions: Driving Mechanisms and Coastal Responses) and to the North and West Europe working group of the INQUA commission on Coastal and Marine Processes. Finally, we thank K. Lambeck and P. Woodworth for providing constructive feedback on the original version of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Glenn A. Milne.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Milne, G., Gehrels, W., Hughes, C. et al. Identifying the causes of sea-level change. Nature Geosci 2, 471–478 (2009). https://doi.org/10.1038/ngeo544

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing