Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow

Abstract

The tectonically driven closure of tropical seaways during the Pliocene epoch (5–2 million years (Myr) ago) altered ocean circulation and affected the evolution of climate. Plate tectonic reconstructions show that the main reorganization of one such seaway, the Indonesian Gateway, occurred between 4 and 3 Myr ago. Model simulations have suggested that this would have triggered a switch in the source of waters feeding the Indonesian throughflow into the Indian Ocean, from the warm salty waters of the South Pacific Ocean to the cool and relatively fresh waters of the North Pacific Ocean. Here we use paired measurements of the δ18O and Mg/Ca ratios of planktonic foraminifera to reconstruct the thermal structure of the eastern tropical Indian Ocean from 5.5 to 2 Myr ago. We find that sea surface conditions remained relatively stable throughout the interval, whereas subsurface waters freshened and cooled by about 4 C between 3.5 and 2.95 Myr ago. We suggest that the restriction of the Indonesian Gateway led to the cooling and shoaling of the thermocline in the tropical Indian Ocean. We conclude that this tectonic reorganization contributed to the global shoaling of the thermocline recorded during the Pliocene epoch, possibly contributing to the development of the equatorial eastern Pacific cold tongue.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Annual ocean temperatures and salinities at (sub)surface levels.
Figure 2: Pliocene proxy records from Site 214 and Site 806.
Figure 3: Pliocene (sub)surface changes in the tropical eastern Indian Ocean in relation to other ocean areas.

References

  1. Haug, G. H., Tiedemann, R., Zahn, R. & Ravelo, A. C. Role of Panama uplift on oceanic freshwater balance. Geology 29, 207–210 (2001).

    Article  Google Scholar 

  2. Cane, M. & Molnar, P. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature 411, 157–162 (2001).

    Article  Google Scholar 

  3. Haug, G. H., Sigman, D. M., Tiedemann, R., Pedersen, T. F. & Sarnthein, M. Onset of permanent stratification in the subarctic Pacific. Nature 401, 779–782 (1999).

    Article  Google Scholar 

  4. Driscoll, N. W. & Haug, G. H. A short circuit in the ocean’s thermohaline circulation: A cause for northern hemisphere glaciation? Science 282, 436–438 (1998).

    Article  Google Scholar 

  5. Steph, S., Tiedemann, R., Groeneveld, J., Sturm, A. & Nürnberg, D. in Proc. ODP, Sci. Results Vol. 202 (eds Tiedemann, R., Mix, A. C., Richter, C. & Ruddiman, W. F.) 1–51 (College Station, 2006).

    Google Scholar 

  6. Mudelsee, M. & Raymo, M. E. Slow dynamics of the northern hemisphere glaciation. Paleoceanography 20, PA4022 (2005).

    Article  Google Scholar 

  7. Ravelo, A. C., Andreasen, D. H., Lyle, M., Lyle, A. O. & Wara, M. W. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429, 263–267 (2004).

    Article  Google Scholar 

  8. Shackleton, & N. J., et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 620–623 (1984).

    Article  Google Scholar 

  9. Gupta, A. K. & Thomas, E. Initiation of northern hemisphere glaciation and strengthening of the northeast Indian monsoon: Ocean drilling program site 758, eastern equatorial Indian ocean. Geology 31, 47–50 (2003).

    Article  Google Scholar 

  10. deMenocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).

    Article  Google Scholar 

  11. Marlow, J. R., Lange, C. B., Wefer, G. & Rosell-Melé, A. Upwelling intensification as part of the Pliocene-Pleistocene climate transition. Science 290, 2288–2291 (2000).

    Google Scholar 

  12. Lawrence, K. T., Liu, Z. & Herbert, T. D. Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. Science 312, 79–83 (2006).

    Article  Google Scholar 

  13. Dekens, P. S., Ravelo, A. C. & McCarthy, M. D. Warm upwelling regions in the Pliocene warm period. Paleoceanography 22, PA3211 (2007).

    Article  Google Scholar 

  14. Ravelo, A. C., Billups, K., Dekens, P. S., Herbert, T. D. & Lawrence, K. T. in Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M., Haywood, A. M., Gregory, J. & Schmidt, D.) (The Geol. Soc. of London & The Micropal. Soc., 2007).

    Google Scholar 

  15. Wara, M. W., Ravelo, A. C. & Delaney, M. L. Permanent El Niño-Like conditions during the Pliocene warm period. Science 309, 758–761 (2005).

    Article  Google Scholar 

  16. Philander, S. G. & Fedorov, A. V. Role of tropics in changing the response to Milankovich forcing some three million years ago. Paleoceanography 18, 1045 (2003).

    Article  Google Scholar 

  17. Fedorov, A. V. et al. The Pliocene paradox (Mechanisms for a permanent El Niño). Science 312, 1485–1489 (2006).

    Article  Google Scholar 

  18. Chaisson, W. & Ravelo, A. C. Pliocene development of the east–west hydrographic gradient in the equatorial pacific. Paleoceanography 15, 497–505 (2000).

    Article  Google Scholar 

  19. Rodgers, K. B., Latif, M. & Legutke, S. Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian throughflow. Geophys. Res. Lett 27, 2941–2944 (2000).

    Article  Google Scholar 

  20. Tomczak, M. & Godfrey, J. S. Regional Oceanography: An Introduction (Pergamon, 1994).

    Google Scholar 

  21. You, Y. & Tomczak, M. Thermocline circulation and ventilation in the Indian Ocean derived from water mass analysis. Deep-Sea Res. 1 40, 13–56 (1993).

    Article  Google Scholar 

  22. Shackleton, N. J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial. Colloq. Int. Cent. Natl. Rech. Sci. 219, 203–209 (1974).

    Google Scholar 

  23. Locarnini, R. A. et al. in NOAA Atlas NESDIS 61 (ed. Levitus, S.) (World Ocean Atlas 2005, Vol. 1: Temperature, US Gov. Printing Office, 2006).

    Google Scholar 

  24. Dekens, P. S., Ravelo, A. C. & Wara, M. W. AGU, Fall Meeting 2006 abstr. PP12A-07 (American Geophysical Union, 2006).

    Google Scholar 

  25. Ravelo, A. C. & Fairbanks, R. G. Oxygen isotopic composition of multiple species of planktonic foraminifera: Recorders of the modern photic zone temperature gradient. Paleoceanography 7, 815–832 (1992).

    Article  Google Scholar 

  26. Ravelo, A. C. & Andreasen, D. H. in Reconstructing Ocean History—A Window into the Future (eds Abrantes, F. & Mix, A.) 217–244 (Plenum Press, 1999).

    Book  Google Scholar 

  27. Gordon, A. L. & Fine, R. A. Pathways of water between the Pacific and Indian Oceans in the Indonesian seas. Nature 379, 146–149 (1996).

    Article  Google Scholar 

  28. Gordon, A. L., Susanto, R. D. & Ffield, A. Throughflow within Makassar straight. Geophys. Res. Lett. 26, 3325–3328 (1999).

    Article  Google Scholar 

  29. Martin, E. E. & Scher, H. A Nd isotopic study of southern sourced waters and Indonesian throughflow at intermediate depths in the Cenozoic Indian Ocean. Geochem. Geophys. Geosyst. 7, Q09N02 (2006).

    Google Scholar 

  30. Bruce, J. G., Quadfasel, D. R. & Swallow, J. C. Somali eddy formation during the commencement of the southwest monsoon, 1978. J. Geophys. Res. 85, 6654–6660 (1980).

    Article  Google Scholar 

  31. Schott, F. A., Dengler, M. & Schoenefeld, R. The shallow overturning circulation of the Indian Ocean. Prog. Oceanogr. 53, 57–103 (2002).

    Article  Google Scholar 

  32. Zheng, H., Powell, C. McA., Rea, D. K., Wang, J. & Wang, P. Late Miocene and mid-Pliocene enhancement of the East Asian monsoon as viewed from the land and sea. Global Planet. Change 41, 147–155 (2004).

    Article  Google Scholar 

  33. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  34. Billups, K. & Schrag, D. P. Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera. Paleoceanography 17, PA000567 (2002).

    Google Scholar 

  35. Gordon, A. L., Weiss, R. L., Smethie, W. M. Jr & Warner, M. J. Thermocline and intermediate water communication between the South Atlantic and Indian Ocean. J. Geophy. Res. 97, 7223–7240 (1992).

    Article  Google Scholar 

  36. Gordon, A. L. Interocean exchange of thermocline water. J. Geophys. Res. 91, 5037–5046 (1986).

    Article  Google Scholar 

  37. Timmermann, A., Justino, F. B., Jin, F.-F. & Goosse, H. Surface temperature control in the North and tropical Pacific during the last glacial maximum. Clim. Dyn. 23, 353–370 (2004).

    Article  Google Scholar 

  38. Toggweiler, J. R., Dixon, K. & Broecker, W. S. The Peru upwelling and the ventilation of the South Pacific thermocline. J. Geophys. Res. 96, 20467–20497 (1991).

    Article  Google Scholar 

  39. Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2003).

    Article  Google Scholar 

  40. Liu, Z. & Yang, H. Extratropical control of tropical climate, the atmospheric bridge and oceanic tunnel. Geophys. Res. Lett. 30, 1230 (2003).

    Google Scholar 

  41. Schlitzer, R. Ocean Data View <http://odv.awi.de> (2007).

Download references

Acknowledgements

Samples for this study were provided by the IODP. Financial support for this research was provided by the German Science Foundation (DFG) within project Nu60/17-1. We thank J. Etourneau, S. Steph, D. Garbe-Schönberg, J. Groeneveld, M. Regenberg, N. Gehre and K. Kiesling for valuable comments and technical support. K.M. was supported by an IIT Kharagpur fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrus Karas.

Supplementary information

Supplementary Information

Supplementary Information (PDF 380 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Karas, C., Nürnberg, D., Gupta, A. et al. Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow. Nature Geosci 2, 434–438 (2009). https://doi.org/10.1038/ngeo520

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo520

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing