Role of thermal refraction in localizing intraplate deformation in southeastern Ukraine

Abstract

Although tectonic plates are deformed mostly at their boundaries, plate interiors can also show considerable non-rigid behaviour1,2,3. The deformational response of plate interiors to tectonic forces depends on composition and texture, temperature and confining pressure, strain rate, presence of fluids and pre-existing structure. However, the relative importance of these factors has been difficult to establish4. Here we use numerical modelling constrained by geological and geophysical data to assess the factors controlling intraplate deformation in southeastern Ukraine. The model’s starting point was the steady-state thermal structure in an otherwise tectonically stable but heterogeneous lithosphere. Our results show that compressional deformation and uplift of the thick Dniepr–Donets sedimentary basin was facilitated by strain localization resulting from temperature effects (thermal refraction) produced by the contrast in thermal conductivity between the sedimentary fill of the basin and the surrounding crystalline crust. We suggest that in settings where thick sedimentary basins occur in cold lithosphere, intraplate deformation can occur simply because of thermal conductivity contrasts, and the reactivation of inherited mechanical weaknesses may not be necessary.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Heat flow (mW m−2) in the southern Ukraine21.
Figure 2: Interpretation of the DOBREflection profile18, simplified and depth converted.
Figure 3: Model results.

References

  1. 1

    Nielsen, S. B., Stephenson, R. A. & Thomsen, E. Dynamics of Mid-Palaeocene North Atlantic rifting linked with European intra-plate deformations. Nature 450, 1071–1074 (2007).

  2. 2

    Banerjee, P., Bürgmann, R., Nagarajan, B. & Apel, E. Intraplate deformation of the Indian subcontinent. Geophys. Res. Lett. 35, L18301 (2008).

  3. 3

    Dyksterhuis, S. & Müller, R. D. Cause and evolution of intraplate orogeny in Australia. Geology 36, 495–498 (2008).

  4. 4

    Ranalli, G. Rheology of the Earth 2nd edn (Kluwer–Academic, 1995).

  5. 5

    Ziegler, P. A. Late Cretaceous and Cenozoic intra-plate compressional deformations in the Alpine foreland—a geodynamic model. Tectonophysics 137, 389–420 (1987).

  6. 6

    Ziegler, P. A., Cloetingh, S. & van Wees, J. D. Dynamics of intra-plate compressional deformation: The Alpine foreland and other examples. Tectonophysics 252, 7–59 (1995).

  7. 7

    Ziegler, P. A., van Wees, J. D. & Cloetingh, S. Mechanical controls on collision-related compressional intraplate deformation. Tectonophysics 300, 103–129 (1998).

  8. 8

    Sandiford, M. Mechanics of basin inversion. Tectonophysics 305, 109–120 (1999).

  9. 9

    Nielsen, S. B. & Hansen, D. L. Physical explanation of the formation and evolution of inversion zones and marginal troughs. Geology 28, 875–878 (2000).

  10. 10

    Hansen, D. L. & Nielsen, S. B. Does thermal weakening explain basin inversion? Earth Planet. Sci. Lett. 198, 113–127 (2002).

  11. 11

    Sandiford, M., Hansen, D. L. & McLaren, S. in Analogue and Numerical Modelling of Crustal Scale Processes 253 (eds Buiter, S. & Schreurs, G.) 271–283 (Geological Society Special Publication, 2006).

  12. 12

    Stovba, S. M. & Stephenson, R. A. The Donbas Foldbelt: Its relationships with the uninverted Donets segment of the Dniepr–Donets Basin, Ukraine. Tectonophysics 313, 59–83 (1999).

  13. 13

    Stephenson, R. A. et al. in European Lithosphere Dynamics 32 (eds Gee, D. G. & Stephenson, R. A.) 463–479 (Geological Society of London Memoir, 2006).

  14. 14

    Saintot, A. et al. in European Lithosphere Dynamics 32 (eds Gee, D. G. & Stephenson, R. A.) 277–289 (Geological Society of London Memoir, 2006).

  15. 15

    van Wees, J.-D., Stephenson, R. A., Stovba, S. M. & Shymanovskyi, V. A. Tectonic variation in the Dniepr–Donets Basin from automated modelling of backstripped subsidence curves. Tectonophysics 268, 257–280 (1996).

  16. 16

    Spiegel, C., Sachsenhofer, R. F., Privalov, V. A., Zhykalyak, M. V. & Panova, E. A. Thermo-tectonic evolution of the Ukrainian Donbas Foldbelt: Evidence from zircon and apatite fission track data. Tectonophysics 383, 193–215 (2004).

  17. 17

    Saintot, A., Stephenson, R., Brem, A., Stovba, S. & Privalov, V. Palaeostress field reconstruction and revised tectonic history of the Donbas fold-and-thrust belt (Ukraine and Russia). Tectonics 22, 1059 (2003).

  18. 18

    Maystrenko, Yu. et al. Crustal-scale pop-up structure in cratonic lithosphere: DOBRE deep seismic reflection study of the Donbas Foldbelt, Ukraine. Geology 31, 733–736 (2003).

  19. 19

    Grad, M. et al. DOBREfraction ’99—velocity model of the crust and upper mantle beneath the Donbas Foldbelt (East Ukraine). Tectonophysics 371, 81–110 (2003).

  20. 20

    Gordienko, V. V. et al. Geothermal Atlas of Ukraine (Naukova Dumka, 2004) (in Russian and English).

  21. 21

    Hurtig, E., Ćermák, V., Haenel, R. & Zui, Z. (eds) Geothermal Atlas of Europe—Maps (International Heat Flow Commission, 1991/2).

  22. 22

    Braun, J. & Beaumont, C. in Sedimentary Basins and Basin Forming Mechanisms 12 (eds Beaumont, C. & Tankard, A. J.) 241–258 (Canadian Society of Petroleum Geologists Memoir, 1987).

  23. 23

    Paterson, M. S. & Luan, F. C. in Deformation Mechanisms, Rheology and Tectonics 54 (eds Knipe, R. J. & Rutter, E. H.) 299–307 (Geological Society of London Special Publication, 1990).

  24. 24

    Shelton, G. & Tullis, J. Experimental flow laws for crustal rocks. Eos 62, 396 (1981).

  25. 25

    Chopra, P. N. & Paterson, M. S. The experimental deformation of dunite. Tectonophysics 78, 453–473 (1981).

  26. 26

    Zaritskii, A. L. Geology and Metallogeny of the South-Western Part of the East-European Platform: Ukrainian Shield, Voronezh and Belarussian Massifs Scale 1:1.000.000. (Geological Committee of Ukraine, 1992).

  27. 27

    Clauser, C. & Huenges, E. in Rock Physics & Phase Relations: A Handbook of Physical Contents 3 (ed. Ahrens, T. J.) 105–126 (AGU Reference Shelf, 1995).

  28. 28

    Grad, M. et al. Crustal structure of the Trans-European Suture Zone region along POLONAISE’ 97 seismic profile P4. J. Geophys. Res. 108, 2541 (2003).

Download references

Acknowledgements

This work was initiated and completed during successive visiting fellowships for R.S. at the Department of Earth Science of the University of Aarhus.

Author information

All authors contributed equally to the manuscript and approve the version being submitted.

Correspondence to Randell Stephenson.

Supplementary information

Supplementary Information

Supplementary Information (PDF 471 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stephenson, R., Egholm, D., Nielsen, S. et al. Role of thermal refraction in localizing intraplate deformation in southeastern Ukraine. Nature Geosci 2, 290–293 (2009). https://doi.org/10.1038/ngeo479

Download citation

Further reading