Letter | Published:

Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum

Nature Geoscience volume 2, pages 127132 (2009) | Download Citation

Subjects

Abstract

Observation-based reconstructions of sea surface temperature from relatively stable periods in the past, such as the Last Glacial Maximum, represent an important means of constraining climate sensitivity and evaluating model simulations1. The first quantitative global reconstruction of sea surface temperatures during the Last Glacial Maximum was developed by the Climate Long-Range Investigation, Mapping and Prediction (CLIMAP) project in the 1970s and 1980s (refs 2, 3). Since that time, several shortcomings of that earlier effort have become apparent4. Here we present an updated synthesis of sea surface temperatures during the Last Glacial Maximum, rigorously defined as the period between 23 and 19 thousand years before present, from the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) project5. We integrate microfossil and geochemical reconstructions of surface temperatures and include assessments of the reliability of individual records. Our reconstruction reveals the presence of large longitudinal gradients in sea surface temperature in all of the ocean basins, in contrast to the simulations of the Last Glacial Maximum climate available at present6,7.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Does the Last Glacial Maximum constrain climate sensitivity? Geophys. Res. Lett. 33, 10.1029/2006GL027137 (2006).

  2. 2.

    CLIMAP Project Members.The surface of the ice-age Earth. Science 191, 1131–1137 (1976).

  3. 3.

    CLIMAP Project Members. Seasonal reconstruction of the Earth’s surface at the last glacial maximum (Map Chart Ser. MC-36, Geol. Soc. Am., 1981).

  4. 4.

    , & Environmental processes of the ice ages: Land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20, 627–657 (2001).

  5. 5.

    , , , & Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quat. Sci. Rev. 24, 813–819 (2005).

  6. 6.

    et al. Last Glacial Maximum temperatures over the North Atlantic, Europe and western Siberia: A comparison between PMIP models, MARGO sea–surface temperatures and pollen-based reconstructions. Quat. Sci. Rev. 25, 2082–2102 (2006).

  7. 7.

    et al. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Clim. Past 3, 261–277 (2007).

  8. 8.

    , & Interhemispheric synchrony of the last deglaciation inferred from alkenone paleothermometry. Nature 385, 707–710 (1997).

  9. 9.

    & Sea surface temperature at the Last Glacial Maximum: A reconstruction using the modern analog technique. Paleoceanography 17, 10.1029/2000PA000506 (2002).

  10. 10.

    et al. Sea surface temperature anomalies in the oceans at the LGM estimated from the alkenone- index: Comparison with GCMs. Geophys. Res. Lett. 31, L03208 (2004).

  11. 11.

    et al. Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP 2000. Paleoceanography 18, 10.1029/2002PA000774 (2003).

  12. 12.

    World Ocean Atlas 1998: <> (NODC, Silver Springs, 1998).

  13. 13.

    et al. Comparing proxies for the reconstruction of LGM sea-surface conditions in the northern North Atlantic. Quat. Sci. Rev. 25, 2820–2834 (2006).

  14. 14.

    , & Constraints on SST estimates for the northern North Atlantic/Nordic Seas during the LGM. Quat. Sci. Rev. 24, 835–852 (2005).

  15. 15.

    , & Changes in biological production in the mixed water region (MWR) of the northwestern North Pacific during the last 27 kyr. Palaeogeogr. Palaeoclimatol. Palaeoecol. 254, 430–447 (2007).

  16. 16.

    & Attribution and impacts of upper ocean biases in CCSM3. J. Clim. 19, 2325–2346 (2006).

  17. 17.

    et al. in Climate Change 2007, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) 19–91 (Cambridge Univ. Press, 2007).

  18. 18.

    et al. Reconstruction of the glacial Atlantic and Pacific sea-surface temperatures from assemblages of planktonic foraminifera: Multi-technique approach based on geographically constrained calibration datasets. Quat. Sci. Rev. 24, 951–998 (2005).

  19. 19.

    & Sea-surface temperatures around the Australian margin and Indian Ocean during the Last Glacial Maximum. Quat. Sci. Rev. 24, 1017–1047 (2005).

  20. 20.

    , , & Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: A methodological overview and data compilation for the Last Glacial Maximum. Quat. Sci. Rev. 24, 821–834 (2005).

  21. 21.

    et al. Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304, 1959–1962 (2004).

  22. 22.

    , & A 70-kyr sea surface temperature record off southern Chile (Ocean Drilling Program Site 1233). Paleoceanography 20, 10.1029/2005PA001146 (2005).

  23. 23.

    & Sea-surface temperature estimates in the Southeast Pacific based on planktonic foraminiferal species; modern calibration and Last Glacial Maximum. Mar. Micropaleontol. 849, 1–29 (2002).

  24. 24.

    et al. Overview of Glacial Atlantic Ocean Mapping (GLAMAP 2000). Paleoceanography 18, 10.1029/2002PA000769 (2003).

  25. 25.

    & in The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems (eds Wefer, G., Mulitza, S. & Ratmeyer, V.) 549–583 (Springer, 2004).

  26. 26.

    , , & Sea surface temperature and sea ice distribution of the last glacial Southern Ocean—A circum-Antarctic view based on siliceous microfossil records. Quat. Sci. Rev. 24, 869–896 (2005).

  27. 27.

    , , & Climate sensitivity estimated from ensemble simulations of glacial climate. Clim. Dyn. 27, 149–163 (2006).

  28. 28.

    & in The South Atlantic in the Late Quaternary: Material Budget and Current Systems (eds Wefer, G., Mulitza, S. & Ratmeyer, V.) 531–548 (Springer, 2004).

  29. 29.

    , & Linking glacial and future climates through an ensemble of GCM simulations. Clim. Past 3, 77–87 (2007).

  30. 30.

    & New improved version of Generic Mapping Tools released. EOS, Trans. Am. Geophys. Union 79, 579 (1998).

Download references

Acknowledgements

We are grateful to M. Kageyama, C. Dumas and J. Y. Peterschmitt for assistance with PMIP2 output files. We thank the HANSE Advanced Study Institute for hosting the first international MARGO workshop in Delmenhorst, Germany, in September 2002 and Fundació Abertis for hosting the second MARGO workshop in Castellet i la Gornal, Spain, in September 2003. We warmly thank the IGBP-PAGES project for its support. The MARGO project is an outcome of the EPILOG working group of IMAGES. C.W. is financially supported by CNRS and INSU.

Author information

Affiliations

  1. LSCE/IPSL, Laboratoire CNRS-CEA-UVSQ, Domaine du CNRS, 91198 Gif-sur-Yvette, France

    • C. Waelbroeck
    • , E. Cortijo
    • , L. Labeyrie
    •  & H. Leclaire
  2. MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University Bremen, 28334 Bremen, Germany

    • A. Paul
    •  & S. Mulitza
  3. Institute for Geosciences, University of Tübingen, 72076 Tübingen, Germany

    • M. Kucera
  4. ICREA and Institute of Environmental Science and Technology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

    • A. Rosell-Melé
  5. Institute for Geosciences, University of Kiel, 24098 Kiel, Germany

    • M. Weinelt
    • , R. Schneider
    •  & U. Pflaumann
  6. College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA

    • A. C. Mix
    • , H. Benway
    • , A. E. Morey
    •  & N. G. Pisias
  7. Alfred Wegener Institute for Polar and Marine Research, 27515 Bremerhaven, Germany

    • A. Abelmann
    • , R. Gersonde
    • , J. Matthiessen
    •  & C. Schäfer-Neth
  8. Antarctic Climate and Ecosystem Cooperative Research Centre and CSIRO Marine and Atmospheric Research, Hobart Tasmania 7001, Australia

    • L. Armand
  9. CEREGE (UMR 6635), Aix-Marseille Université, CNRS, IRD, Collège de France, Europole de l’Arbois, BP80, 13545 Aix-en-Provence, France

    • E. Bard
    •  & K. Tachikawa
  10. School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3YE, UK

    • S. Barker
  11. Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT0200, Australia

    • T. T. Barrows
  12. CRG Marine Geosciences, University of Barcelona, 08028 Barcelona, Spain

    • I. Cacho
  13. Institute of Applied Geosciences, National Taiwan Ocean University, Keelung 20224, Taiwan

    • M.-T. Chen
    •  & C.-C. Huang
  14. DGO, UMR-CNRS 5805 EPOC, University of Bordeaux I, Talence, France

    • X. Crosta
    • , J. Duprat
    • , F. Eynaud
    • , L. Londeix
    • , S. Mangin
    • , T. Radi
    •  & J.-L. Turon
  15. GEOTOP, University of Québec, PO Box 8888, Montreal H3C 3P8, Canada

    • A. de Vernal
    • , M. Henry
    • , C. Hillaire-Marcel
    •  & S. Solignac
  16. Bjreknes Centre for Climate Research, University of Bergen, 5007 Bergen, Norway

    • T. Dokken
    • , E. Jansen
    •  & M. Meland
  17. Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK

    • H. Elderfield
    •  & T. Kiefer
  18. Department of Geography, University of Limerick, Ireland

    • A. Hayes
  19. School of Geography, Politics and Sociology, University of Newcastle, Newcastle NE1 7RU, UK

    • S. Juggins
  20. Laboratoire E08/C10, University of Sfax, 3038 Sfax, Tunisia

    • N. Kallel
  21. Department of Oceanography, Dalhousie University, Halifax NS B3H 4J1, Canada

    • M. Kienast
  22. Department of Geography, University of Liverpool, Liverpool L69 7ZT, UK

    • F. Marret
  23. ISMER, University of Québec, Rimouski G5L 3A1, Canada

    • A. Rochon
  24. National Oceanography Centre, Southampton SO14 3ZH, UK

    • E. J. Rohling
  25. Geoscience Australia, GPO Box 378, Canberra ACT 2601, Australia

    • L. Sbaffi
  26. Department of Geology, University of California, Davis, California 95616, USA

    • H. Spero

Consortia

  1. MARGO Project Members

    *A full list of authors and their affiliations appears at the end of the paper

Authors

    Corresponding author

    Correspondence to C. Waelbroeck.

    Supplementary information

    PDF files

    1. 1.

      Supplementary Information

      Supplementary Information

    About this article

    Publication history

    Received

    Accepted

    Published

    DOI

    https://doi.org/10.1038/ngeo411

    Further reading