The role of the stratosphere in the European climate response to El Niño

Abstract

El Niño/Southern Oscillation (ENSO) is the largest natural interannual climate signal in the tropics; oscillations between warm El Niño and cold La Niña phases occur every few years. The effects are felt not only in the centre of action, the tropical Pacific region, but around the globe. Observational studies show a clear response in European climate to ENSO in late winter1. However, the underlying mechanisms of the link are not yet understood. Here we use a general circulation model of the atmosphere, that has been extended into the upper atmospheric layers, to provide end-to-end evidence for a global teleconnection pathway from the Pacific region to Europe via the stratosphere. We present evidence for an active stratospheric role in the transition to cold conditions in northern Europe and mild conditions in southern Europe in late winter during El Niño years. In our experiments, this mechanism is restricted to years when stratospheric sudden warmings occur. The response in European surface climate to the El Niño signal is large enough to be useful for seasonal forecasting.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Composite surface climate response to El Niño.
Figure 2: Modelled El Niño perturbations to tropospheric/stratospheric geopotential height.
Figure 3: Modelled lower stratospheric climate response to El Niño.
Figure 4: Downward progression of El Niño climate signal from the stratosphere to the troposphere.
Figure 5: Modelled surface climate response to El Niño associated with a weak and strong polar vortex.

References

  1. 1

    Brönnimann, S., Xoplaki, E., Casty, C., Pauling, A. & Luterbacher, J. ENSO influence on Europe during the last centuries. Clim. Dyn. 28, 181–197 (2007).

    Article  Google Scholar 

  2. 2

    Trenberth, K. E. et al. Progress during TOGA in understanding and modelling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. 103, 14291–14324 (1998).

    Article  Google Scholar 

  3. 3

    Brönnimann, S. Impact of El Niño–Southern Oscillation on European climate. Rev. Geophys. 45, RG3003 (2007).

    Article  Google Scholar 

  4. 4

    Moron, V. & Gouirand, I. Seasonal modulation of the ENSO relationships with sea level pressure anomalies over the North Atlantic in October–March 1873–1996. Int. J. Climatol. 23, 143–155 (2003).

    Article  Google Scholar 

  5. 5

    Brönnimann, S. et al. Extreme climate of the global troposphere and stratosphere in 1940–42 related to El Niño. Nature 431, 971–974 (2004).

    Article  Google Scholar 

  6. 6

    Fraedrich, K. European Grosswetter during the warm and cold extremes of the El Niño/Southern Oscillation. Int. J. Climatol. 10, 21–31 (1990).

    Article  Google Scholar 

  7. 7

    Fereday, D., Knight, J. R., Scaife, A. A., Folland, C. K. & Philipp, A. Cluster analysis of North Atlantic European weather types. J. Clim. 21, 3687–3703 (2008).

    Article  Google Scholar 

  8. 8

    Toniazzo, T. & Scaife, A. A. The influence of ENSO on winter North Atlantic climate. Geophys. Res. Lett. 33, L24704 (2006).

    Article  Google Scholar 

  9. 9

    Greatbatch, R. J., Lu, J. & Peterson, K. A. Nonstationary impact of ENSO on Euro-Atlantic winter climate. Geophys. Res. Lett. 31, L02208 (2004).

    Article  Google Scholar 

  10. 10

    Greatbatch, R. J. & Jung, T. Local versus tropical diabatic heating and the winter North Atlantic Oscillation. J. Clim. 20, 2058–2075 (2007).

    Article  Google Scholar 

  11. 11

    Thompson, D. W. J. & Wallace, J. M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25, 1297–1300 (1998).

    Article  Google Scholar 

  12. 12

    Manzini, E., Giorgetta, M. A., Esch, M., Kornblueh, L. & Roeckner, E. The influence of sea surface temperatures on the Northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Clim. 19, 3863–3881 (2006).

    Article  Google Scholar 

  13. 13

    Taguchi, M. & Hartmann, D. L. Increased occurrence of stratospheric sudden warmings during El Niño as simulated by WACCM. J. Clim. 19, 324–332 (2006).

    Article  Google Scholar 

  14. 14

    Charney, J. G. & Drazin, P. G. Propagation of planetaryscale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 66, 83–109 (1961).

    Article  Google Scholar 

  15. 15

    van Loon, H. & Labitzke, K. The Southern Oscillation. Part V: The anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the quasi-biennial oscillation. Mon. Weath. Rev. 115, 357–369 (1987).

    Article  Google Scholar 

  16. 16

    Hamilton, K. An examination of observed Southern Oscillation effects in the Northern Hemisphere stratosphere. J. Atmos. Sci. 50, 3468–3473 (1993).

    Article  Google Scholar 

  17. 17

    Hamilton, K. A general circulation model simulation of El Niño effects in the extratropical Northern Hemisphere stratosphere. Geophys. Res. Lett. 20, 1803–1806 (1993).

    Article  Google Scholar 

  18. 18

    Bell, C. J., Gray, L. J., Charlton-Perez, A. J. & Scaife, A. A. Stratospheric communication of ENSO teleconnections to European Winter. J. Clim. Submitted.

  19. 19

    Matsuno, T. A dynamical model of stratospheric warmings. J. Atmos. Sci. 28, 1479–1494 (1971).

    Article  Google Scholar 

  20. 20

    Baldwin, M. P. & Dunkerton, T. J. Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res. 104, 30937–30946 (1999).

    Article  Google Scholar 

  21. 21

    Haynes, P. H. et al. On the ‘downward control’ of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci. 48, 651–678 (1991).

    Article  Google Scholar 

  22. 22

    Thompson, D. W. J., Furtado, J. C. & Shepherd, T. G. On the tropospheric response to anomalous stratospheric wave drag and radiative heating. J. Atmos. Sci. 63, 2616–2629 (2006).

    Article  Google Scholar 

  23. 23

    Song, Y. & Robinson, W. A. Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci. 61, 1711–1725 (2004).

    Article  Google Scholar 

  24. 24

    van Oldenborgh, G. J. Comments on ‘Predictability of winter climate over the North Atlantic European region during ENSO events’. J. Clim. 18, 2770–2772 (2005).

    Article  Google Scholar 

  25. 25

    Luo, J.J., Masson, S., Behera, S. K. & Yamagata, T. Extended ENSO predictions using a fully coupled ocean-atmosphere model. J. Clim. 21, 84–93 (2008).

    Article  Google Scholar 

  26. 26

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article  Google Scholar 

  27. 27

    Martin, G. M. et al. The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology. J. Clim. 19, 1274–1301 (2006).

    Article  Google Scholar 

  28. 28

    Allan, R. J. & Ansell, T. J. A new globally complete monthly historical mean sea level pressure data set (HadSLP2): 1850–2004. J. Clim. 19, 5816–5842 (2006).

    Article  Google Scholar 

  29. 29

    Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. & Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res. 111, D12106 (2006).

    Article  Google Scholar 

  30. 30

    Hulme, M., Osborn, T. & Johns, T. Precipitation sensitivity to global warming: Comparison of observations to HadCM2 simulations. Geophys. Res. Lett. 25, 3379–3382 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the joint DECC and MoD Integrated Climate Programme (DECC) GA01101 (MoD) CBC/2B/0417_Annex C5 and by the EU Framework 6 Programme under contract 003903-GOCE (DYNAMITE).

Author information

Affiliations

Authors

Contributions

S.I. and A.A.S. carried out the analysis and wrote the paper. The vertically extended version of the climate model was developed by A.A.S. and others at the Met Office Hadley Centre.

Corresponding author

Correspondence to S. Ineson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ineson, S., Scaife, A. The role of the stratosphere in the European climate response to El Niño. Nature Geosci 2, 32–36 (2009). https://doi.org/10.1038/ngeo381

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing