Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The response of the Antarctic Circumpolar Current to recent climate change


Observations show a significant intensification of the Southern Hemisphere westerlies, the prevailing winds between the latitudes of 30 and 60 S, over the past decades. A continuation of this intensification trend is projected by climate scenarios for the twenty-first century. The response of the Antarctic Circumpolar Current and the carbon sink in the Southern Ocean to changes in wind stress and surface buoyancy fluxes is under debate. Here we analyse the Argo network of profiling floats and historical oceanographic data to detect coherent hemispheric-scale warming and freshening trends that extend to depths of more than 1,000 m. The warming and freshening is partly related to changes in the properties of the water masses that make up the Antarctic Circumpolar Current, which are consistent with the anthropogenic changes in heat and freshwater fluxes suggested by climate models. However, we detect no increase in the tilt of the surfaces of equal density across the Antarctic Circumpolar Current, in contrast to coarse-resolution model studies. Our results imply that the transport in the Antarctic Circumpolar Current and meridional overturning in the Southern Ocean are insensitive to decadal changes in wind stress.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial pattern of changes in the ACC.
Figure 2: Temporal evolution of potential temperature and salinity within the ACC.
Figure 3: Change of water-mass properties on isopycnal surfaces.
Figure 4: Temperature and salinity changes across the ACC.
Figure 5: Trend in baroclinic potential-energy anomaly and volume transport.


  1. Rintoul, S. R., Hughes, C. W. & Olbers, D. in Ocean Circulation Climate (eds Siedler, G., Church, J. & Gould, J.) 271–302 (Academic, 2001).

    Google Scholar 

  2. IPCC, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S., et al.) 1009 (Cambridge Univ. Press, 2007).

  3. Toggweiler, J. R. & Russell, J. Ocean circulation in a warming climate. Nature 451, 286–288 (2008).

    Article  Google Scholar 

  4. Levitus, S., Antonov, J., Boyer, T. P. & Stephens, C. Warming of the world ocean. Science 287, 2225–2229 (2000).

    Article  Google Scholar 

  5. Barnett, T. P. et al. Penetration of human-induced warming into the world’s oceans. Science 309, 284–287 (2005).

    Article  Google Scholar 

  6. Levitus, S., Antonov, J. & Boyer, T. Warming of the world ocean. Geophys. Res. Lett. 32, L02604 (2005).

    Google Scholar 

  7. Willis, J. K., Roemmich, D. & Cornuelle, B. Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J. Geophys. Res. 109, 10.1029/2003JC002260 (2004).

  8. Sabine, C. L. et al. The oceanic sink for anthropogenic CO2 . Science 305, 367–371 (2004).

    Article  Google Scholar 

  9. Mikaloff Fletcher, S. E. et al. Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Glob. Biogeochem. Cycles 20, 10.1029/2005GB002530 (2005).

  10. Zickfeld, K., Fyfe, J. C., Saenko, O. A., Eby, M. & Weaver, A. J. Response of the global carbon cycle to human-induced changes in the Southern Hemisphere winds. Geophys. Res. Lett. 34, 10.1029/2006GL028797 (2007).

  11. Lenton, A. & Matear, R. J. Role of the Southern Annular Mode (SAM) in Southern Ocean CO2 uptake. Glob. Biogeochem. Cycles 21, GB2016 (2007).

    Article  Google Scholar 

  12. Lovenduski, N. S., Gruber, N. & Doney, S. C. Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Glob. Biogeochem. Cycles 22, 10.1029/2007GB003139 (2008).

  13. Fyfe, J. C. & Saenko, O. A. Simulated changes in extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett. 33, L06701 (2006).

    Google Scholar 

  14. Yin, J. H. A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett. 32, L18701 (2005).

    Article  Google Scholar 

  15. Bi, D., Budd, W. F., Hirst, A. C. & Wu, X. Response of the Antarctic Circumpolar Current transport to global warming in a coupled model. Geophys. Res. Lett. 29, 10.1029/2002GL015919 (2002).

  16. Saenko, O. A., Fyfe, J. C. & England, M. H. On the response of the oceanic wind-driven circulation to atmospheric CO2 increase. Clim. Dyn. 25, 415–426 (2005).

    Article  Google Scholar 

  17. Hall, A. & Visbeck, M. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Clim. 15, 3043–3057 (2002).

    Article  Google Scholar 

  18. Oke, P. R. & England, M. H. Oceanic response to changes in the latitude of the Southern Hemisphere subpolar westerly winds. J. Clim. 17, 1040–1054 (2004).

    Article  Google Scholar 

  19. Sen Gupta, A. & England, M. H. Coupled ocean–atmosphere–ice response to variations in the Southern Annular Mode. J. Clim. 19, 4457–4486 (2006).

    Article  Google Scholar 

  20. Hallberg, R. & Gnanadesikan, A. The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Initial results from the Modelling Eddies in the Southern Ocean project. J. Phys. Oceanogr. 36, 3312–3330 (2006).

    Article  Google Scholar 

  21. Hogg, A. McC., Meredith, M. P., Blundell, J. R. & Wilson, C. Eddy heat flux in the Southern Ocean: Response to variable wind forcing. J. Clim. 21, 608–620 (2008).

    Article  Google Scholar 

  22. Screen, J. A., Gillett, N. P., Stevens, D. P., Marshall, G. J. & Roscoe, H. K. The role of eddies in the Southern Ocean temperature response to the Southern Annular Mode. J. Clim. (in the press, 2008).

  23. Thompson, D. W. L. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Nature 296, 895–899 (2002).

    Google Scholar 

  24. Marshall, G. J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).

    Article  Google Scholar 

  25. Meredith, M. P. & Hogg, A. M. Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett. 33, 10.1029/2006GL026499 (2006).

  26. Gille, S. T. Warming of the Southern Ocean since the 1950s. Science 295, 1275–1277 (2002).

    Article  Google Scholar 

  27. Gille, S. T. Decadal-scale temperature trends in the Southern Hemisphere. J. Clim. 21, 4749–4765 (2008).

    Article  Google Scholar 

  28. Roemmich, D. et al. in Observing the Oceans in the 21st century (eds Koblinsky, C. J. & Smith, N. R.) 248–258 (GODAE Project Office and Bureau of Meteorology, 2001).

    Google Scholar 

  29. Ridgway, K. R., Dunn, J. R. & Wilkin, J. L. Ocean interpolation by four-dimensional weighted least squares—application to the waters around Australia. J. Atmos. Oceanic Tech. 19, 1357–1375.

  30. Jackett, D. R. & McDougall, T. J. A neutral density variable for the world’s ocean. J. Phys. Oceanogr. 27, 237–263 (1997).

    Article  Google Scholar 

  31. Aoki, S., Bindoff, N. L. & Church, J. A. Interdecadal water mass changes in the Southern Ocean between 30 E and 160 E. Geophys. Res. Lett. 32, L07607 (2005).

    Google Scholar 

  32. Wong, A. P. S., Bindoff, N. L. & Church, J. A. Freshwater and heat changes in the North and South Pacific oceans between the 1960s and 1985–94. J. Clim. 14, 1613–1633 (2001).

    Article  Google Scholar 

  33. Bindoff, N. L. & McDougall, T. J. Decadal changes along an Indian Ocean section at 32 S and their interpretation. J. Phys. Oceanogr. 30, 1207–1222 (2000).

    Article  Google Scholar 

  34. Bryden, H. L., McDonagh, E. L. & King, B. A. Changes in ocean water mass properties: Oscillations or trends? Science 300, 2086–2088 (2003).

    Article  Google Scholar 

  35. Bindoff, N. L. & Church, J. A. Warming of the water column in the southwest Pacific Ocean. Nature 357, 59–62 (1992).

    Article  Google Scholar 

  36. Johnson, G. C. & Orsi, A. H. Southwest Pacific Ocean water-mass changes between 1968/69 and 1990/91. J. Clim. 10, 306–316 (1997).

    Article  Google Scholar 

  37. Banks, H. T. & Bindoff, N. L. Comparison of observed temperature and salinity changes in the Indo–Pacific with results from the coupled climate model HadCM3: Processes and mechanisms. J. Clim. 16, 156–166 (2003).

    Article  Google Scholar 

  38. Bindoff, N. L. & McDougall, T. J. Diagnosing climate change and ocean ventilation using hydrographic data. J. Phys. Oceanogr. 24, 1137–1152 (1994).

    Article  Google Scholar 

  39. Fyfe, J. C., Saenko, O. A., Zickfeld, K., Eby, M. & Weaver, A. J. The role of poleward-intensifying winds on Southern Ocean warming. J. Clim. 20, 5391–5400 (2007).

    Article  Google Scholar 

  40. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  41. Borowski, D., Gerdes, R. & Olbers, D. Thermohaline and wind forcing of a circumpolar channel with blocked geostrophic contours. J. Phys. Oceanogr. 32, 2520–2540 (2002).

    Article  Google Scholar 

  42. Rintoul, S. R., Sokolov, S. & Church, J. A 6 year record of baroclinic transport variability of the Antarctic Circumpolar Current at 140 E derived from expendable bathythermograph and altimeter measurements. J. Geophys. Res. 107, 10.1029/2001JC000787 (2002).

  43. Lovenduski, N. S., Gruber, N., Doney, S. C. & Lima, I. D. Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern annular Mode. Glob. Biogeochem. Cycles 21, GB2026 (2007).

    Article  Google Scholar 

  44. Verdy, A., Dutkiewicz, S., Follows, M. J., Marshall, J. & Czaja, A. Carbon dioxide and oxygen fluxes in the Southern Ocean: Mechanisms of interannual variability. Glob. Biogeochem. Cycles 21, GB2020 (2007).

    Article  Google Scholar 

  45. Le Quéré, C. et al. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316, 1735–1738 10.1126/science.1136188 (2007).

  46. Law, R. M., Matear, R. J. & Francey, R. J. Comment on ‘Saturation of the Southern Ocean CO2 sink due to recent climate change’. Science 319, 570a (2008).

    Article  Google Scholar 

  47. Zickfeld, K., Fyfe, J. C., Eby, M. & Weaver, A. J. Comment on ‘Saturation of the Southern Ocean CO2 sink due to recent climate change’. Science 319, 570b (2008).

    Article  Google Scholar 

  48. Le Quéré, C. et al. Response to comments on ‘Saturation of the Southern Ocean CO2 sink due to recent climate change’. Science 319, 570c (2008).

    Article  Google Scholar 

  49. Gent, P. R. & McWilliams, J. C. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–155.

  50. Dunn, J. R. & Ridgway, K. R. Mapping ocean properties in regions of complex topography. Deep-Sea Res. I 49, 591–604 (2002).

    Article  Google Scholar 

Download references


We acknowledge the role of J. Dunn in developing and making available the CSIRO ocean data archives, and K. Lorbacher for her assistance in the data analysis. The study was initiated during visits of C.W.B. and A.D. at CSIRO Marine Research Laboratories in Hobart, supported by an Ernst Froehlich Fellowship (C.W.B.) and a grant from DAAD (A.D.). This research was supported in part by the CSIRO Wealth from Oceans Flagship, the Australian government’s Cooperative Research Centre (CRC) programme through the ACE CRC, and the Australian Greenhouse Office. The paper is a contribution to The Future Ocean Cluster at Kiel University.

Author information

Authors and Affiliations


Corresponding author

Correspondence to C. W. Böning.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information (PDF 1022 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Böning, C., Dispert, A., Visbeck, M. et al. The response of the Antarctic Circumpolar Current to recent climate change. Nature Geosci 1, 864–869 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing