Review Article | Published:

Sedimentary challenge to Snowball Earth

Nature Geoscience volume 1, pages 817825 (2008) | Download Citation

Subjects

Abstract

Evidence from the magnetic field fossilized in sedimentary rocks suggests that, more than 600 million years ago, ice occupied tropical latitudes. A popular explanation for these findings, the Snowball Earth concept, envisages a fully frozen Earth for millions of years, caused by a runaway ice–albedo feedback. A rapid, catastrophic meltback at very high levels of atmospheric carbon dioxide is thought to have ended this extreme climatic state. However, sedimentary rocks deposited during these cold intervals indicate that dynamic glaciers and ice streams continued to deliver large amounts of sediment to open oceans throughout the glacial cycle. The sedimentary evidence therefore indicates that despite the severity of glaciation, some oceans must have remained ice-free. Significant areas of open ocean have important implications for the survival and diversification of life and for the workings of the global carbon cycle.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    in The Proterozoic Biosphere (eds Schopf, J. W. & Klein, C.) 51–52 (Cambridge Univ. Press, 1992).

  2. 2.

    , , & A Neoproterozoic snowball Earth. Science 281, 1342–1346 (1998).

  3. 3.

    & The Snowball Earth hypothesis: Testing the limits of global change. Terra Nova 14, 129–155 (2002).

  4. 4.

    & in Ice Ages: Ancient and Modern (eds Wright, A. E. & Moseley, F.) 189–216 (Seel House, 1975).

  5. 5.

    & (eds) Earth's Pre-Pleistocene Glacial Record (Cambridge Univ. Press, 1981).

  6. 6.

    & Low palaeolatitude of deposition for Late Precambrian periglacial varvites in South Australia: Implications for palaeoclimatology. Earth Planet. Sci. Lett. 79, 419–430 (1986).

  7. 7.

    , & Soft-sediment palaeomagnetic field tests of late Precambrian glaciogenic sediments. Eos 68, 1251 (1987).

  8. 8.

    & The Neoproterozoic climate paradox: Equatorial palaeolatitude for Marinoan glaciation near sea-level in South Australia. Earth Planet. Sci. Lett. 134, 107–124 (1995).

  9. 9.

    , & Palaeomagnetic polarity reversals in Marinoan (ca. 600 Ma) glacial deposits of Australia: Implications for the duration of low-latitude glaciations in Neoproterozoic time. Geol. Soc. Am. Bull. 111, 1120–1139 (1999).

  10. 10.

    Stratigraphic, geochronological, and palaeomagnetic constraints upon the Neoproterozoic climatic paradox. Am. J. Sci. 300, 347–433 (2000).

  11. 11.

    The reliability of palaeomagnetic data. Tectonophysics 184, 1–9 (1990).

  12. 12.

    & Zipper rift: A tectonic model for Neoproterozoic glaciations during the break-up of Rodinia after 750 Ma. Earth Sci. Rev. 65, 1–73 (2004).

  13. 13.

    Glacio-epochs and the supercontinent cycle after 3.0 Ga: Tectonic boundary conditions for glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 10.1016/j.palaeo.2007.09.021 (2007).

  14. 14.

    Proterozoic (pre-Ediacaran) glaciation and the high obliquity, low-latitude ice, strong seasonality (HOLIST) hypothesis: Principles and tests. Earth Sci. Rev. 87, 61–93 (2008).

  15. 15.

    An appealing Snowball Earth that's still hard to swallow. Science 287, 1734–1736 (2000).

  16. 16.

    Snowball Earth on trial. Eos 87, 495 (2006); see also Eos 88, 110 (2007).

  17. 17.

    & Neoproterozoic glaciation in the Earth system. J. Geol. Soc. Lond. 164, 895–921 (2007).

  18. 18.

    , , & Scenario for the evolution of atmospheric pCO2 during a snowball Earth. Geology 36, 47–50 (2008).

  19. 19.

    & Climate forcings and the initiation of low-latitude ice sheets during the Neoproterozoic Varanger glacial interval. J. Geophy. Res. 105, 20,737–20,756 (2000).

  20. 20.

    , , & Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model. Nature 405, 425–429 (2000).

  21. 21.

    , & CO2 levels required for deglaciation of a 'Near-Snowball' Earth. Geophys. Res. Lett. 28, 283–286 (2001).

  22. 22.

    , , , & Is there a conflict between the Neoproterozoic glacial deposits and the snowball Earth interpretation: An improved understanding with numerical modelling. Earth Planet. Sci. Lett. 208, 101–112 (2003).

  23. 23.

    & in The Extreme Proterozoic: Geology, Geochemistry, and Climate (eds Jenkins, G. S., McMenamin, M. A. S., McKay, C. P. & Sohl L.) 91–106 (Geophysical Monograph 146, American Geophysical Union, 2004).

  24. 24.

    , , & in The Extreme Proterozoic: Geology, Geochemistry, and Climate (eds Jenkins, G. S., McMenamin, M. A. S., McKay, C. P. & Sohl L.) 107–124 (Geophysical Monograph 146, American Geophysical Union, 2004).

  25. 25.

    High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature 429, 646–649 (2004).

  26. 26.

    Climate dynamics of a hard snowball Earth. J. Geophys. Res. 110, D01111 (2005).

  27. 27.

    , , & Investigating plausible mechanisms to trigger a deglaciation from a hard Snowball Earth. C. R. Géosci. 339, 274–287 (2007).

  28. 28.

    , & Snowball Earth prevention by dissolved organic carbon remineralization. Nature 450, 813–818 (2007).

  29. 29.

    & A snowball Earth versus a slushball Earth: Results from Neoproterozoic climate modelling sensitivity experiments. Geosphere 4, 401–410 (2008).

  30. 30.

    & GCM sensitivity test using increased rotation rate, reduced solar forcing and orography to examine low latitude glaciation in the Neoproterozoic. Geophys. Res. Lett. 25, 3525–3528 (1998).

  31. 31.

    , & Low-latitude glaciation and rapid changes in the Earth's obliquity explained by obliquity-oblateness feedback. Nature 396, 453–455 (1998).

  32. 32.

    Global climate model high-obliquity solutions to the ancient climatic puzzles of the Faint-Young Sun Paradox and low-latitude Proterozoic glaciation. J. Geophys. Res. 105, 7357–7370 (2000).

  33. 33.

    , , , & Is high obliquity a plausible cause for Neoproterozoic glaciations? Geophys. Res. Lett. 29, 10.1029/2002GL015902 (2002).

  34. 34.

    , , , & A 'snowball Earth' climate triggered by continental break-up through changes in run-off. Nature 428, 303–306 (2004).

  35. 35.

    et al. Coupled modelling of global carbon cycle and climate in the Neoproterozoic: Links between Rodinia break-up and major glaciations. C. R. Géosci. 339, 212–222 (2007).

  36. 36.

    Absence of a runaway ice–albedo feedback in the Neoproterozoic. Geology 31, 473–476 (2003).

  37. 37.

    , , , & The impact of atmospheric and oceanic heat transports on the sea–ice albedo instability during the Neoproterozoic. Clim. Dynam. 22, 293–306 (2004).

  38. 38.

    , , & Testing paleogeographic controls on a Neoproterozoic snowball Earth. Geophys. Res. Lett. 29, 10.1029/2001GL014352 (2002).

  39. 39.

    & Glacial flow of floating marine ice in 'Snowball Earth'. J. Geophys. Res. 108, 10.1029/2002JC001471 (2003).

  40. 40.

    Late Precambrian mixtites: Glacial and/or nonglacial? Am. J. Sci. 274, 673–824 (1974).

  41. 41.

    & Syntectonic subaqueous mass flows of the Neoproterozoic Otavi Group, Namibia: Where is the evidence for global glaciation? Basin Res. 19, 179–198 (2007).

  42. 42.

    , & The Neoproterozoic Fiq glaciation and its aftermath, Huqf Supergroup of Oman. Basin Res. 16, 507–534 (2004).

  43. 43.

    , , & in Glacial Sedimentary Processes and Products (eds Hambrey, M. J., Christoffersen, P., Glasser, N. F. & Hubbard, B.) 343–399 (Blackwell, 2008).

  44. 44.

    , & Neoproterozoic glacial rain-out intervals: Observations and implications. Geology 30, 35–38 (2002).

  45. 45.

    Precambrian permafrost horizons as indicators of palaeoclimate. Precambr. Res. 32, 233–242 (1986).

  46. 46.

    Late Pre-Cambrian Glaciation in Scotland (Memoir 6, The Geological Society of London, 1971).

  47. 47.

    & Subglacial and proglacial glacitectonic deformation in the Neoproterozoic Port Askaig Formation, Scotland. Geomorphology 75, 266–280 (2005).

  48. 48.

    in Ice Ages: Ancient and Modern (eds Wright, A. E. & Mosley, F.) 241–274 (Seal House, 1975).

  49. 49.

    & Neoproterozoic environmental change recorded in the Port Askaig Formation, Scotland: Climatic vs tectonic controls. Sedim. Geol. 183, 99–124.

  50. 50.

    et al. The Late Precambrian Geology of the Scottish Highlands and Islands (Guide 44, The Geologists' Association, London, 1991).

  51. 51.

    , & in The Extreme Proterozoic: Geology, Geochemistry and Climate (eds Jenkyns, G. S., McMenamin, M. A. S., McKay, C. P. & Sohl, L.) 13–32 (Monograph 146, American Geophysical Union, 2004).

  52. 52.

    , , & Compositional and mineralogical variations in a Neoproterozoic glacially influenced succession, Mirbat area, southern Oman: Implications for palaeoweathering conditions. Precambr. Res. 154, 248–265 (2007).

  53. 53.

    , , & Climatic cycles during a Neoproterozoic 'Snowball' glacial epoch. Geology 35, 299–302 (2007).

  54. 54.

    & An exceptionally thick upper Proterozoic (Sturtian) glacial succession in the Mount Painter area, South Australia. Geol. Soc. Am. Bull. 101, 834–845 (1989).

  55. 55.

    Vreeland diamictites — Neoproterozoic glaciogenic slope deposits, Rocky Mountains, Northeast British Columbia. Bull. Can. Petro. Geol. 48, 246–261 (2000).

  56. 56.

    , , & Neoproterozoic 'snowball Earth' under scrutiny: Evidence from the Fiq glaciation of Oman. Geology 30, 891–894 (2002).

  57. 57.

    et al. A record of Antarctic climate and ice sheet history recovered. Eos 88, 557–558 (2007).

  58. 58.

    Earth's glacial record and its tectonic setting. Earth Sci. Rev. 35, 1–248 (1993).

  59. 59.

    The Huqf Supergroup of Oman: Basin development and context for Neoproterozoic glaciation. Earth Sci. Rev. 84, 139–185 (2007).

  60. 60.

    et al. Geochronological constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am. J. Sci. 307, 1097–1145 (2007).

  61. 61.

    Reconstruction of ancient sea conditions with an example from the Swiss Molasse. Mar. Geol. 60, 455–473 (1984).

  62. 62.

    in The Precambrian Earth: Tempos and Events (eds Eriksson, P. G., Altermann, W., Nelson, D. R., Mueller W. U. & Cantuneanu, O.) 448–459 (Elsevier, 2004).

  63. 63.

    & in The Extreme Proterozoic: Geology, Geochemistry and Climate (eds Jenkyns, G. S., McMenamin, M. A. S., McKay, C. P. & Sohl, L.) 145–159 (Monograph 146, American Geophysical Union, 2004).

  64. 64.

    , , & Neoproterozoic glacially influenced basin margin succession and 'atypical' cap carbonate associated with bedrock palaeovalleys, Mirbat area, southern Oman. Basin Res. 18, 471–496 (2006).

  65. 65.

    , , , & A composite stratigraphy for the Neoproterozoic Huqf Supergroup of Oman: Integrating new litho-, chemo- and chronostratigraphic data of the Mirbat area, southern Oman. J. Geol. Soc. Lond. 164, 997–1009 (2007).

  66. 66.

    Glacial and syntectonic sedimentation: The upper Proterozoic Kingston Peak Formation, southern Panamint Range, eastern California. Bull. Geol. Soc. Am. 96, 1537–1553 (1985).

  67. 67.

    Depositional controls on glacial facies associations in a basinal setting, Late Proterozoic, Amadeus Basin, central Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 73, 205–232 (1989).

  68. 68.

    & in Glacimarine Environments: Processes and Sediments (eds Dowdeswell, J. A. & Scourse, J. D.), 387–410 (Special Publication 53, The Geological Society of London, 1990).

  69. 69.

    The role of subglacial water in ice-sheet mass balance. Nature Geosci. 1, 297–304 (2008).

  70. 70.

    , , & U–Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation. Geology 32, 817–820 (2004).

  71. 71.

    On Cryogenian (Neoproterozoic) ice-sheet dynamics and the limitations of the glacial sedimentary record. 28th DeBeers Alexander Du Toit Memorial Lecture. S. Afr. J. Geol. 108, 557–576 (2005).

  72. 72.

    & in Glacier-Influenced Sedimentation on High-Latitude Continental Margins (eds Dowdeswell, J. A. & Cofaigh, C. O.) 215–244 (Special Publication 203, The Geological Society of London, 2002).

  73. 73.

    et al. Are basal Ediacaran (635 Ma) post-glacial 'cap dolostones' diachronous? Earth Planet. Sci. Lett. 258, 114–131 (2007).

  74. 74.

    , , & A geochemical modelling study of the evolution of the chemical composition of seawater linked to a 'snowball' glaciation. Biogeosciences 5, 253–267 (2008).

  75. 75.

    New palaeomagnetic results from the 'cap dolomite' of the Neoproterozoic Walsh Tillite, northwestern Australia. Precambr. Res. 100, 359–370 (2000).

  76. 76.

    , & , Detrital remanent magnetization in haematite-bearing Neoproterozoic Puga cap dolostone, Amazon craton: A rock magnetic and SEM study. Geophys. J. Int. 163, 491–500 (2005).

  77. 77.

    , & The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova 1–6 (2008).

  78. 78.

    Pre-Mesozoic ice ages: Their bearing on understanding the climate system. (Memoir 192, Geological Society of America, 1999).

  79. 79.

    , , , & Two or four Neoproterozoic glaciations? Geology 26, 1059–1063 (1998).

  80. 80.

    , , & Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: Stratigraphic variation and the effects of diagenesis and metamorphism. Precambr. Res. 49, 301–327 (1991).

  81. 81.

    & The Vendian succession of northeastern Spitzbergen: petrogenesis of a dolomite-tillite association. Precambr. Res. 26, 111–167 (1984).

  82. 82.

    , , , & Secular variation in carbon isotope rations from the upper Proterozoic succession of Svalbard and east Greenland. Nature 321, 832–839 (1986).

  83. 83.

    & Glacially influenced deep-marine sedimentation of the late Precambrian Gaskiers Formation, Newfoundland, Canada. Sedimentology 36, 601–620 (1989).

  84. 84.

    , , , & Towards a Neoproterozoic composite carbon isotopic record. Bull. Geol. Soc. Am. 117, 1181–1207 (2005).

  85. 85.

    , , & Constraints on the timing of Marinoan 'Snowball Earth' glaciation by 187Re–187Os dating of a Neoproterozoic postglacial black shale in Western Canada. Earth Planet. Sci. Lett. 222, 729–740.

  86. 86.

    , & Re–Os geochronology of postglacial black shales in Australia: Constrains on the timing of “Sturtian” glaciation. Geology 34, 729–732 (2006).

  87. 87.

    et al. U–Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–98 (2005).

  88. 88.

    et al. Near-synchronous interhemispheric termination of the Last Glacial Maximum in mid-latitudes. Science 312, 1510–1513 (2006).

  89. 89.

    , & Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals? Geology 29, 443–446 (2001).

  90. 90.

    , & Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426, 822–826 (2003).

  91. 91.

    , , , & Carbon isotopic evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in south China. Geology 36, 347–350 (2008).

  92. 92.

    , & Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature 453, 642–645 (2008).

  93. 93.

    , & in The Rise and Fall of the Ediacaran Biota—Special Publication 286 (eds Vickers-Rich, P. & Komarower, P.) 53–76 (The Geological Society of London 2007).

  94. 94.

    & Extreme winds and waves in the aftermath of a Neoproterozoic glaciation. Nature 433, 123–1227 (2005).

  95. 95.

    , Neoproterozoic cap carbonates: A critical appraisal of existing models and the plumeworld hypothesis. Terra Nova 17, 299–310 (2005).

  96. 96.

    et al. Anomalous cold in the Pangaean tropics. Geology 36, 659–662 (2008).

  97. 97.

    , & Carbonate deposition, climate stability, and Neoproterozoic ice ages. Science 302, 859–862 (2003).

  98. 98.

    , , & in The Extreme Proterozoic: Geology, Geochemistry and Climate (eds Jenkyns, G. S. McMenamin, M. A. S., McKay. C. P. & Sohl, L.) 79–89 (Geophysical Monograph Series 146, American Geophysical Union, 2004).

  99. 99.

    , & Dynamics of the Neoproterozoic carbon cycle. Proc. Natl Acad. Sci. USA 100, 8124–8129 (2003).

  100. 100.

    Sedimentology, Chemostratigraphy and Geochronology of the Lower Huqf Supergroup, Oman. PhD thesis, Trinity College Dublin (2001).

  101. 101.

    , & New Pb–Pb single zircon age constraints on the timing of Neoproterozoic glaciation and continental break-up in Namibia. J. Geol. 104, 459–469 (1996).

  102. 102.

    , & Dating Neoproterozoic continental break-up in the Richtersveld Igneous complex, South Africa. J. Geol. 109, 493–508 (2001).

  103. 103.

    , & Neoproterozoic tectonic and climatic evolution recorded in the Gariep Belt, Namibia and South Africa. Basin Res. 14, 55–67 (2002).

  104. 104.

    et al. The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralization. J. Afr. Earth Sci. 33, 503–528 (2001).

  105. 105.

    & in S. Am. Symp. Isotope Geology 4 1, 321–323 (Salvador, Brazil, 2003).

  106. 106.

    , & Direct dating of the Sete Lagoas cap carbonate (Bambuí Group, Brazil) and implications for the Neoproterozoic glacial events. Terra Nova 19, 401–406 (2007).

  107. 107.

    et al. New U–Pb zircon dates for the Neoproterozoic Ghubrah glaciation and for the top of the Huqf Supergroup, Oman. Geology 28, 175–178 (2000).

  108. 108.

    , , & SHRIMP U–Pb geochronology of Neoproterozoic Windermere Supergroup, central Idaho: Implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits. Geol. Soc. Am. Bull. 115, 349–372 (2003).

  109. 109.

    & U–Pb SHRIMP ages of Neoproterozoic (Sturtian) glaciogenic Pocatello Formation, southeastern Idaho. Geology 32, 881–884 (2004).

  110. 110.

    et al. New constraints on the ages of Neoproterozoic glaciations in south China. Geology 32, 437–440 (2004).

Download references

Author information

Affiliations

  1. Department of Earth Science & Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.  philip.allen@imperial.ac.uk

    • Philip A. Allen
  2. Neftex Petroleum Consultants Ltd, 97 Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.  james.etienne@neftex.com

    • James L. Etienne

Authors

  1. Search for Philip A. Allen in:

  2. Search for James L. Etienne in:

About this article

Publication history

Published

DOI

https://doi.org/10.1038/ngeo355

Further reading