Early Earth mantle heterogeneity revealed by light oxygen isotopes of Archaean komatiites

Abstract

Geodynamic processes on early Earth, especially the interaction between the crust and deep mantle, are poorly constrained and subject to much debate. The rarity of fresh igneous materials more than 3 billion years old accounts for much of this uncertainty. Here we examine 3.27-billion-year-old komatiite lavas from Weltevreden Formation in the Barberton greenstone belt, which is part of the Kaapvaal Craton in Southern Africa. We show that primary magmatic compositions of olivine are well preserved in these lavas based on major and trace element systematics. These komatiitic lavas represent products of deep mantle plumes. Oxygen isotope compositions (δ18O) of the fresh olivine measured by laser fluorination are consistently lighter (about 2‰) than those obtained from modern mantle-derived volcanic rocks. These results suggest a mantle source for the Weltevreden komatiites that is unlike the modern mantle and one that reflects mantle heterogeneity left over from a Hadean magma ocean. The anomalously light δ18O may have resulted from fractionation of deep magma ocean phases, as has been proposed to explain lithophile and siderophile isotope compositions of Archaean komatiites.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: MgO variation diagrams for Ni and Ti.
Figure 2: Range in δ18O of Weltevreden olivine compared to Archaean crustal materials and modern mantle-derived materials.

References

  1. 1

    Mattey, D., Lowry, D. & Macpherson, C. Oxygen isotope composition of mantle peridotite. Earth Planet. Sci. Lett. 128, 231–241 (1994).

    Article  Google Scholar 

  2. 2

    Chazot, G., Lowry, D., Menzies, M. & Mattey, D. Oxygen isotopic composition of hydrous and anhydrous mantle peridotites. Geochim. Cosmochim. Acta 61, 161–169 (1997).

    Article  Google Scholar 

  3. 3

    Eiler, J. M. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev. Mineral. Geochem. 43, 319–364 (2001).

    Article  Google Scholar 

  4. 4

    Kyser, T. K. Stable isotope variations in the mantle. Rev. Mineral. Geochem. 16, 141–164 (1986).

    Google Scholar 

  5. 5

    Valley, J. W. et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 150, 561–580 (2005).

    Article  Google Scholar 

  6. 6

    Arndt, N., Lesher, M. C. & Barnes, S. J. Komatiite (Cambridge Univ. Press, 2008).

    Google Scholar 

  7. 7

    Kareem, K. Komatiites of the Weltevreden Formation, Barberton Greenstone Belt, South Africa: Implications for the Chemistry and Temperature of the Archean Mantle PhD thesis, Louisiana State Univ. (2005).

  8. 8

    Puchtel, I. S. et al. Insights into early Earth from Barberton komatiites: evidence from lithophile isotope and trace element systematics. Geochim. Cosmochim. Acta 108, 63–90 (2013).

    Article  Google Scholar 

  9. 9

    Thompson Stiegler, M., Cooper, M., Byerly, G. R. & Lowe, D. R. Geochemistry and petrology of komatiites of the Pioneer ultramafic complex of the 3.3 Ga Weltevreden Formation, Barberton greenstone belt, South Africa. Precambrian Res. 212–213, 1–12 (2012).

    Article  Google Scholar 

  10. 10

    Robin-Popieul, C. C. M. et al. A new model for Barberton komatiites: deep critical melting with high melt retention. J. Petrol. 53, 2191–2229 (2012).

    Article  Google Scholar 

  11. 11

    Lowe, D. R. & Byerly, G. R. Stratigraphy of the west-central part of the Barberton Greenstone Belt, South Africa. in GSA Special Papers Volume 329: Geologic Evolution of the Barberton Greenstone Belt, South Africa 329 (eds Lowe, D. R. & Byerly, G. R.) 1–36 (Geological Society of America, 1999).

    Google Scholar 

  12. 12

    Byerly, G. R., Kröner, A., Lowe, D. R., Todt, W. & Walsh, M. M. Prolonged magmatism and time constraints for sediment deposition in the early Archean Barberton greenstone belt: evidence from the Upper Onverwacht and Fig Tree groups. Precambrian Res. 78, 125–138 (1996).

    Article  Google Scholar 

  13. 13

    Taylor, H. P. The effects of assimilation of country rocks by magmas on 18O/16O and 87Sr/86Sr systematics in igneous rocks. Earth Planet. Sci. Lett. 47, 243–254 (1980).

    Article  Google Scholar 

  14. 14

    Asafov, E. et al. A Hydrous Mantle Reservoir in the Paleoarchean? (Goldschmidt, 2016).

    Google Scholar 

  15. 15

    Pope, E. C., Bird, D. K. & Rosing, M. T. Isotope composition and volume of Earth’s early oceans. Proc. Natl Acad. Sci. USA 109, 4371–4376 (2012).

    Article  Google Scholar 

  16. 16

    Knauth, L. P. & Lowe, D. R. High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol. Soc. Am. Bull. 115, 566–580 (2003).

    Article  Google Scholar 

  17. 17

    Kasting, J. F. et al. Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth Planet. Sci. Lett. 252, 82–93 (2006).

    Article  Google Scholar 

  18. 18

    de Wit, M. J. & Furnes, H. 3.5-Ga hydrothermal fields and diamictites in the Barberton Greenstone Belt-Paleoarchean crust in cold environments. Sci. Adv. 2, e1500368 (2016).

    Article  Google Scholar 

  19. 19

    Kareem, K. & Byerly, G. R. Petrology and geochemistry of 3.3 Ga komatiites—Weltevreden Formation, Barberton Greenstone Belt. In 34th Annu. Lunar Planet. Sci. Conf. abstr. 2017 (2003).

  20. 20

    Asimow, P. D. & Ghiorso, M. S. Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am. Mineral. 83, 1127–1132 (1998).

    Article  Google Scholar 

  21. 21

    Ghiorso, M. S. & Sack, R. O. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119, 197–212 (1995).

    Article  Google Scholar 

  22. 22

    Thompson, M. E., Kareem, K. M., Xie, X. & Byerly, G. R. Fresh melt inclusions in 3.3 Ga komatiitic olivines from the Barberton Greenstone Belt, South Africa. In 34th Annu. Lunar Planet. Sci. Conf. abstr. 2112 (2003).

  23. 23

    Connolly, B. D. et al. Highly siderophile element systematics of the 3.3 Ga Weltevreden komatiites, South Africa: implications for early Earth history. Earth Planet. Sci. Lett. 311, 253–263 (2011).

    Article  Google Scholar 

  24. 24

    Puchtel, I. S., Walker, R. J., Touboul, M., Nisbet, E. G. & Byerly, G. R. Insights into early Earth from the Pt–Re–Os isotope and highly siderophile element abundance systematics of Barberton komatiites. Geochim. Cosmochim. Acta 125, 394–413 (2014).

    Article  Google Scholar 

  25. 25

    Tormey, D. R., Grove, T. L. & Bryan, W. B. Experimental petrology of normal MORB near the Kane Fracture Zone: 22°–25° N mid-Atlantic ridge. Contrib. Mineral. Petrol. 96, 121–139 (1987).

    Article  Google Scholar 

  26. 26

    Gurenko, A. A., Kamenetsky, V. S. & Kerr, A. C. Oxygen isotopes and volatile contents of the Gorgona komatiites, Colombia: a confirmation of the deep mantle origin of H2O. Earth Planet. Sci. Lett. 454, 154–165 (2016).

    Article  Google Scholar 

  27. 27

    Gregory, R. T. & Taylor, H. P. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J. Geophys. Res. 86, 2737–2755 (1981).

    Article  Google Scholar 

  28. 28

    Muehlenbachs, K. Alteration of the oceanic crust and the 18O history of seawater. Rev. Mineral. Geochem. 16, 425–444 (1986).

    Google Scholar 

  29. 29

    MacGregor, I. D. & Manton, W. I. Roberts victor eclogites: ancient oceanic crust. J. Geophys. Res. 91, 14063–14079 (1986).

    Article  Google Scholar 

  30. 30

    Jacob, D. E. Nature and origin of eclogite xenoliths from kimberlites. Lithos 77, 295–316 (2004).

    Article  Google Scholar 

  31. 31

    Macgregor, I. D. & Carter, J. L. The chemistry of clinopyroxenes and garnets of eclogite and peridotite xenoliths from the Roberts Victor mine, South Africa. Phys. Earth Planet. Inter. 3, 391–397 (1970).

    Article  Google Scholar 

  32. 32

    Jagoutz, E., Dawson, J. B., Hoernes, S., Spettel, B. & Wanke, H. Anorthositic oceanic crust in the Archean Earth. In 15th Lunar Planet. Sci. Conf. 395–396 (1984).

  33. 33

    Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. & Nikogosian, I. K. An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590–597 (2005).

    Article  Google Scholar 

  34. 34

    Sobolev, A. V. et al. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417 (2007).

    Article  Google Scholar 

  35. 35

    Lassiter, J. C. & Hauri, E. H. Osmium-isotopes variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet. Sci. Lett. 164, 483–496 (1998).

    Article  Google Scholar 

  36. 36

    Matzen, A. K., Wood, B. J., Baker, M. B. & Stolper, E. M. The roles of pyroxenite and peridotite in the mantle sources of oceanic basalts. Nat. Geosci. 10, 530–535 (2017).

    Article  Google Scholar 

  37. 37

    Sobolev, A. V. et al. Komatiites reveal a hydrous Archaean deep-mantle reservoir. Nature 531, 628–632 (2016).

    Article  Google Scholar 

  38. 38

    Herzberg, C. Petrological evidence from komatiites for an early Earth carbon and water cycle. J. Petrol. 57, 2271–2288 (2016).

    Article  Google Scholar 

  39. 39

    Herwartz, D. et al. Revealing the climate of snowball Earth from Δ17O systematics of hydrothermal rocks. Proc. Natl Acad. Sci. USA 112, 5337–5341 (2015).

    Article  Google Scholar 

  40. 40

    Boyet, M. & Carlson, R. A new geochemical model for the Earth’s mantle inferred from 146Sm–142Nd systematics. Earth Planet. Sci. Lett. 250, 254–268 (2006).

    Article  Google Scholar 

  41. 41

    Blichert-Toft, J. & Puchtel, I. S. Depleted mantle sources through time: evidence from Lu–Hf and Sm–Nd isotope systematics of Archean komatiites. Earth Planet. Sci. Lett. 297, 598–606 (2010).

    Article  Google Scholar 

  42. 42

    Zheng, Y.-F. Prediction of high-temperature oxygen isotope fractionation factors between mantle minerals. Phys. Chem. Miner. 24, 356–364 (1997).

    Article  Google Scholar 

  43. 43

    Maier, W. D. et al. Progressive mixing of meteoritic veneer into the early Earth/’s deep mantle. Nature 460, 620–623 (2009).

    Article  Google Scholar 

  44. 44

    Fiorentini, M. L., Barnes, S. J., Maier, W. D., Burnham, O. M. & Heggie, G. Global variability in the platinum-group element contents of komatiites. J. Petrol. 52, 83–112 (2011).

    Article  Google Scholar 

  45. 45

    Chatterjee, R. & Lassiter, J. C. 186Os/188Os variations in upper mantle peridotites: Constraints on the Pt/Os ratio of primitive upper mantle, and implications for late veneer accretion and mantle mixing timescales. Chem. Geol. 442, 11–22 (2016).

    Article  Google Scholar 

  46. 46

    Valley, J. W., Kitchen, N., Kohn, M. J., Niendorf, C. R. & Spicuzza, M. J. UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating. Geochim. Cosmochim. Acta 59, 5223–5231 (1995).

    Article  Google Scholar 

  47. 47

    Sharp, Z. D. A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim. Cosmochim. Acta 54, 1353–1357 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

Field work by G.R.B. and K.K. was funded by a grant from the National Science Foundation. Laboratory work by H.B. was partially provided by the strategic priority research program (B) of CAS (XDB18010104) and China NSFC grant 41490635. We would like to thank E. Marshall and J. Barnes of the Stable Isotope lab in the University of Texas at Austin Department of Geological Sciences for their assistance performing oxygen isotope measurements.

Author information

Affiliations

Authors

Contributions

B.L.B. performed analyses and authored the final manuscript. K.K. performed analyses and contributed to early versions of the manuscript. H.B. performed analyses and assisted in authoring the final manuscript. G.R.B. conceived the project, collected samples from the field with K.K., and assisted in authoring the final manuscript.

Corresponding author

Correspondence to Benjamin L. Byerly.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 720 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Byerly, B., Kareem, K., Bao, H. et al. Early Earth mantle heterogeneity revealed by light oxygen isotopes of Archaean komatiites. Nature Geosci 10, 871–875 (2017). https://doi.org/10.1038/ngeo3054

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing