Carbon storage in the Mississippi River delta enhanced by environmental engineering


River deltas have contributed to atmospheric carbon regulation throughout Earth history, but functioning in the modern era has been impaired by reduced sediment loads, altered hydrologic regimes, increased global sea-level rise and accelerated subsidence. Delta restoration involves environmental engineering via river diversions, which utilize self-organizing processes to create prograding deltas. Here we analyse sediment cores from Wax Lake delta, a product of environmental engineering, to quantify the burial of organic carbon. We find that, despite relatively low concentrations of organic carbon measured in the cores (about 0.4%), the accumulation of about 3 T m−2 of sediment over the approximate 60 years of delta building resulted in the burial of a significant amount of organic carbon (16 kg m−2). This equates to an apparent organic carbon accumulation rate of 250 ± 23 g m−2 yr−1, which implicitly includes losses by carbon emissions and erosion. Our estimated accumulation rate for Wax Lake delta is substantially greater than previous estimates based on the top metre of delta sediments and comparable to those of coastal mangrove and marsh habitats. The sedimentation of carbon at the Wax Lake delta demonstrates the capacity of engineered river diversions to enhance both coastal accretion and carbon burial.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Land change in the Mississippi River delta from 1932 to 2010.
Figure 2: Linear regression model between elevation and carbon stock for the six vibracore sites.
Figure 3: Linear regression models between elevation, normalized-difference vegetation index (NDVI), thickness of deltaic stratum and carbon stock for the vibracore sites.
Figure 4: Modelled carbon stock distribution of the Wax Lake delta.


  1. 1

    Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49, 137–139 (1995).

    Article  Google Scholar 

  2. 2

    Burdige, D. J. Burial of terrestrial organic matter in marine sediments: a re-assessment. Glob. Biogeochem. Cycles 19, GB4011 (2005).

    Article  Google Scholar 

  3. 3

    Smith, R. W., Bianchi, T. S., Allison, M., Savage, C. & Galy, V. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8, 450–453 (2015).

    Article  Google Scholar 

  4. 4

    Bianchi, T. S. & Allison, M. A. Large-river delta-front estuaries as natural ‘recorders’ of global environmental change. Proc. Natl Acad. Sci. USA 106, 8085–8092 (2009).

    Article  Google Scholar 

  5. 5

    Berner, R. A. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci. 282, 451–473 (1982).

    Article  Google Scholar 

  6. 6

    McLeod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 . Front. Ecol. Environ. 9, 552–560 (2011).

    Article  Google Scholar 

  7. 7

    Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).

    Article  Google Scholar 

  8. 8

    Giosan, L., Syvitski, J., Constantinescu, S. & Day, J. Protect the world’s deltas. Nature 516, 31–33 (2014).

    Article  Google Scholar 

  9. 9

    Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).

    Article  Google Scholar 

  10. 10

    Meade, R. H. & Moody, J. A. Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940–2007. Hydrol. Process. 2274, 35–49 (2009).

    Google Scholar 

  11. 11

    Horowitz, A. J. A quarter century of declining suspended sediment fluxes in the Mississippi River and the effect of the 1993 flood. Hydrol. Process. 2274, 13–34 (2009).

    Google Scholar 

  12. 12

    Alexander, J., Wilson, R. & Green, W. A Brief History and Summary of the Effects of River Engineering and Dams on the Mississippi River System and Delta. Circular 1375 (US Geological Survey, 2012).

    Google Scholar 

  13. 13

    Kolker, A. S., Allison, M. A. & Hameed, S. An evaluation of subsidence rates and sea-level variability in the northern Gulf of Mexico. Geophys. Res. Lett. 38, L21404 (2011).

    Article  Google Scholar 

  14. 14

    Couvillion, B. R. et al. Land Area Change in Coastal Louisiana from 1932 to 2010Scientific Investigations Map 3164 (US Geological Survey, 2011).

    Google Scholar 

  15. 15

    Couvillion, B. R., Steyer, G. D., Wang, H., Beck, H. J. & Rybczyk, J. M. Forecasting the effects of coastal protection and restoration projects on wetland morphology in coastal louisiana under multiple environmental uncertainty scenarios. J. Coast. Res. 67, 29–50 (2013).

    Article  Google Scholar 

  16. 16

    DeLaune, R. D. & White, J. R. Will coastal wetlands continue to sequester carbon in response to an increase in global sea level?: A case study of the rapidly subsiding Mississippi river deltaic plain. Climatic Change 110, 297–314 (2012).

    Article  Google Scholar 

  17. 17

    LACPRA Louisiana’s Comprehensive Master Plan for a Sustainable Coast (Coastal Protection and Restoration Authority of Louisiana, 2017).

  18. 18

    Day, J. W. et al. Large infrequently operated river diversions for Mississippi delta restoration. Estuar. Coast. Shelf Sci. 183, 292–303 (2016).

    Article  Google Scholar 

  19. 19

    Paola, C. et al. Natural processes in delta restoration: application to the Mississippi Delta. Ann. Rev. Mar. Sci. 3, 67–91 (2011).

    Article  Google Scholar 

  20. 20

    Mossa, J. The changing geomorphology of the Atchafalaya River, Louisiana: a historical perspective. Geomorphology 252, 112–127 (2016).

    Article  Google Scholar 

  21. 21

    Allison, M. A. et al. A water and sediment budget for the lower Mississippi–Atchafalaya River in flood years 2008–2010 implications for sediment discharge to the oceans and coastal restoration in Louisiana. J. Hydrol. 432, 84–97 (2012).

    Article  Google Scholar 

  22. 22

    Wellner, R., Beaubouef, R., Van Wagoner, J., Roberts, H. & Sun, T. Jet-plume depositional bodies—the primary building blocks of Wax Lake Delta. Gulf Coast Assoc. Geol. Soc. Trans. 55, 867–909 (2005).

    Google Scholar 

  23. 23

    Allen, Y. C., Couvillion, B. R. & Barras, J. a. Using multitemporal remote sensing imagery and inundation measures to improve land change estimates in coastal wetlands. Estuar. Coasts 35, 190–200 (2012).

    Article  Google Scholar 

  24. 24

    Shaw, J. B., Mohrig, D. & Whitman, S. K. The morphology and evolution of channels on the Wax Lake Delta, Louisiana, USA. J. Geophys. Res. 118, 1562–1584 (2013).

    Article  Google Scholar 

  25. 25

    Roberts, H. & Sneider, J. Atchafalaya-Wax Lake Deltas: The New Regressive Phase of the Mississippi River Delta ComplexA Field Seminar for the 2003 GCAGS Convention (Louisiana Geological Survey, 2003).

    Google Scholar 

  26. 26

    Shelmon, R. Deltas: Models for Exploration 209–221 (Houston Geological Society, 1975).

    Google Scholar 

  27. 27

    Shaw, J. B. et al. Airborne radar imaging of subaqueous channel evolution in Wax Lake Delta, Louisiana, USA. Geophys. Res. Lett. 43, 5035–5042 (2016).

    Article  Google Scholar 

  28. 28

    Edmonds, D. A., Shaw, J. B. & Mohrig, D. Topset-dominated deltas: a new model for river delta stratigraphy. Geology 39, 1175–1178 (2011).

    Article  Google Scholar 

  29. 29

    Johnson, W. B., Sasser, C. E. & Gosselink, J. G. Succession of vegetation in an evolving river delta, Atchafalaya Bay, Louisiana. J. Ecol. 73, 973–986 (1985).

    Article  Google Scholar 

  30. 30

    Carle, M., SasserC., E. & Roberts, H. H., V. Accretion and vegetation community change in the Wax Lake Delta following the historic 2011 Mississippi River flood. J. Coast. Res. 31, 569–587 (2013).

  31. 31

    Shields, M. R., Bianchi, T. S., Gélinas, Y., Allison, M. A. & Twilley, R. R. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments. Geophys. Res. Lett. 43, 1149–1157 (2016).

    Article  Google Scholar 

  32. 32

    Carle, M. V. & Sasser, C. E. Productivity and resilience: long-term trends and storm-driven fluctuations in the plant community of the accreting Wax Lake Delta. Estuar. Coasts 39, 406–422 (2015).

    Article  Google Scholar 

  33. 33

    Carle, M. V., Wang, L. & Sasser, C. E. Mapping freshwater marsh species distributions using WorldView-2 high-resolution multispectral satellite imagery. Int. J. Remote Sens. 35, 4698–4716 (2014).

    Article  Google Scholar 

  34. 34

    Gabler, C. A. et al. Macroclimatic change expected to transform coastal wetland ecosystems this century. Nat. Clim. Change 7, 142–147 (2017).

    Article  Google Scholar 

  35. 35

    Comeaux, R. S., Allison, M. A. & Bianchi, T. S. Mangrove expansion in the Gulf of Mexico with climate change: implications for wetland health and resistance to rising sea levels. Estuar. Coast. Shelf Sci. 96, 81–95 (2012).

    Article  Google Scholar 

  36. 36

    Bianchi, T. S. et al. Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands. Estuar. Coast. Shelf Sci. 119, 7–16 (2013).

    Article  Google Scholar 

  37. 37

    Mitra, S., Wassmann, R. & Vlek, P. L. G. An appraisal of global wetlands area and its organic carbon stock. Curr. Sci. 88, 25–35 (2005).

    Google Scholar 

  38. 38

    Roden, E. E. Diversion of electron flow from methanogenesis to crystalline Fe(III) Oxide reduction in carbon-limited cultures of wetland sediment microorganisms diversion of electron flow from methanogenesis to crystalline Fe(III) oxide reduction in carbon-limit. Society 69, 5702–5706 (2003).

    Google Scholar 

  39. 39

    Roden, E. E. & Wetzel, R. G. Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol. Oceanogr. 41, 1733–1748 (1996).

    Article  Google Scholar 

  40. 40

    Poulton, S. W. & Raiswell, R. The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. Am. J. Sci. 302, 774–805 (2002).

    Article  Google Scholar 

  41. 41

    Lalonde, K., Mucci, A., Ouellet, A. & Gélinas, Y. Preservation of organic matter in sediments promoted by iron. Nature 483, 198–200 (2012).

    Article  Google Scholar 

  42. 42

    Bianchi, T. S., Pennock, J. R. & Twilley, R. R. Biogeochemistry of Gulf of Mexico Estuaries (John Wiley, 1999).

    Google Scholar 

  43. 43

    Vile, M. A., Bridgham, S. D. & Kelman Wieder, R. Response of anaerobic carbon mineralization rates to sulfate amendments in a boreal peatland. Ecol. Appl. 13, 720–734 (2003).

    Article  Google Scholar 

  44. 44

    Mitsch, W. J. et al. Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River basin: strategies to counter a persistent ecological problem. Bioscience 51, 373–388 (2001).

    Article  Google Scholar 

  45. 45

    Yu, K., DeLaune, R. D. & Boeckx, P. Direct measurement of denitrification activity in a Gulf coast freshwater marsh receiving diverted Mississippi River water. Chemosphere 65, 2449–2455 (2006).

    Article  Google Scholar 

  46. 46

    Walker, J. T., Stow, C. A. & Geron, C. Nitrous oxide emissions from the Gulf of Mexico hypoxic zone. Environ. Sci. Technol. 44, 1617–1623 (2010).

    Article  Google Scholar 

  47. 47

    Brown, S. et al. 2017 Coastal Master Plan: Appendix C: ModelingCh. 3 (Coastal Protection and Restoration Authority of Louisiana, 2017).

    Google Scholar 

  48. 48

    Peyronnin, N. et al. Optimizing sediment diversion operations: working group recommendations for integrating complex ecological and social landscape interactions. Water 9, 368 (2017).

    Article  Google Scholar 

  49. 49

    Syvitski, J. P. M. & Milliman, J. D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol. 115, 1–19 (2007).

    Article  Google Scholar 

  50. 50

    Milliman, J. D. & Syvitski, J. P. M. Geomorphic/tectonic control of sediment discharge to the Ocean: the importance of small mountainous rivers. J. Geol. 100, 525–544 (1992).

    Article  Google Scholar 

  51. 51

    Roberts, H. H., Coleman, J. M., Bentley, S. J. & Walker, N. An embryonic major delta lobe: a new generation of delta studies in the Atchafalaya-Wax Lake Delta system. Gulf Coast Assoc. Geol. Soc. Trans. 53, 690–703 (2003).

    Google Scholar 

  52. 52

    Kim, W., Mohrig, D., Twilley, R., Paola, C. & Parker, G. Is it feasible to build New Land in the Mississippi river delta? Eos 90, 373–384 (2009).

    Article  Google Scholar 

  53. 53

    Shaw, J. B., Mohrig, D. & Wagner, R. W. Flow patterns and morphology of a prograding river delta. J. Geophys. Res. 121, 372–291 (2016).

    Article  Google Scholar 

  54. 54

    Seybold, H., Andrade, J. S., Herrmann, H. J., Andrade, J. S. Jr & Herrmann, H. J. Modeling river delta formation. Proc. Natl Acad. Sci. USA 104, 16804–16809 (2007).

    Article  Google Scholar 

  55. 55

    Edmonds, D. A. & Slingerland, R. L. Mechanics of river mouth bar formation: implications for the morphodynamics of delta distributary networks. J. Geophys. Res. 112, F02034 (2007).

    Google Scholar 

  56. 56

    Wolinsky, M. A., Edmonds, D. A., Martin, J. & Paola, C. Delta allometry: growth laws for river deltas. Geophys. Res. Lett. 37, L21403 (2010).

    Article  Google Scholar 

  57. 57

    Wagner, W. et al. Elevation change and stability on a prograding delta. Geophys. Res. Lett. 44, 1786–1794 (2017).

    Google Scholar 

  58. 58

    Henry, K. M. & Twilley, R. R. Nutrient biogeochemistry during the early stages of delta development in the Mississippi River deltaic plain. Ecosystems 17, 1–17 (2014).

    Article  Google Scholar 

  59. 59

    Arnold, S. L. & Schepers, J. S. A simple Roller-Mill grinding procedure for plant and soil samples. Commun. Soil Sci. Plant Anal. 35, 537–545 (2004).

    Article  Google Scholar 

  60. 60

    Rosen, P. A. et al. UAVSAR: a new NASA airborne SAR system for science and technology research. In 2006 IEEE Conf. Radar 22–29 (IEEE, 2006);

  61. 61

    Rouse, J. W., Haas, R. H., Schell, J. A. & Deering, D. W. Monitoring vegetation systems in the Great Plains with ERTS. In 3rd Earth Resour. Technol. Satell. Symp. Vol. 1, 309–317 (NASA, 1974).

  62. 62

    R Core Team R: A Language and Environment for Statistical Computing (2016).

  63. 63

    Davison, A. C., Hinkley, D. V. & Schechtman, E. Efficient bootstrap simulation. Biometrika 73, 555–566 (1986).

    Article  Google Scholar 

Download references


We thank the Gulf Coast Association of Geological Societies (GCAGS) for the student grant that supported our field work. The Jon and Beverly Thompson Chair in Geological Sciences at University of Florida provided support for the laboratory analyses.

Author information




M.R.S., T.S.B. and D.M. determined the sampling strategy. M.R.S. and A.S.K. collected the cores. M.R.S. and J.H.C. conducted the laboratory analyses. M.R.S. and J.A.H. conducted the data processing and statistical analyses. M.R.S., T.S.B., D.M., J.A.H., W.F.K., A.S.K. and J.H.C. critically analysed the results and wrote the paper.

Corresponding author

Correspondence to Michael R. Shields.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 897 kb)

Supplementary Information

Supplementary Information (TXT 8878 kb)

Supplementary Information

Supplementary Information (TXT 8875 kb)

Supplementary Information

Supplementary Information (CSV 4 kb)

Supplementary Information

Supplementary Information (XLSX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shields, M., Bianchi, T., Mohrig, D. et al. Carbon storage in the Mississippi River delta enhanced by environmental engineering. Nature Geosci 10, 846–851 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing