Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Earth’s early O2 cycle suppressed by primitive continents

An Author Correction to this article was published on 14 November 2017

This article has been updated

Abstract

Free oxygen began to accumulate in Earth’s surface environments between 3.0 and 2.4 billion years ago. Links between oxygenation and changes in the composition of continental crust during this time are suspected, but have been difficult to demonstrate. Here we constrain the average composition of the exposed continental crust since 3.7 billion years ago by compiling records of the Cr/U ratio of terrigenous sediments. The resulting record is consistent with a predominantly mafic crust prior to 3.0 billion years ago, followed by a 500- to 700-million-year transition to a crust of modern andesitic composition. Olivine and other Mg-rich minerals in the mafic Archaean crust formed serpentine minerals upon hydration, continuously releasing O2-scavenging agents such as dihydrogen, hydrogen sulfide and methane to the environment. Temporally, the decline in mafic crust capable of such process coincides with the first accumulation of O2 in the oceans, and subsequently the atmosphere. We therefore suggest that Earth’s early O2 cycle was ultimately limited by the composition of the exposed upper crust, and remained underdeveloped until modern andesitic continents emerged.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Time evolution of oxygenation and crustal evolution.
Figure 2: Cr/U of major terrestrial reservoirs and rock types.

Change history

  • 14 November 2017

    In the Supplementary Information file originally published, notes were mistakenly omitted from Supplementary Table 4. This has now been corrected.

References

  1. 1

    Canfield, D. E. The early history of atmospheric oxygen. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).

    Article  Google Scholar 

  2. 2

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article  Google Scholar 

  3. 3

    Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–759 (2000).

    Article  Google Scholar 

  4. 4

    Anbar, A. D. et al. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–1906 (2007).

    Article  Google Scholar 

  5. 5

    Frei, R., Gaucher, C., Poulton, S. & Canfield, D. E. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461, 250–253 (2009).

    Article  Google Scholar 

  6. 6

    Planavsky, N. J., Bekker, A., Rouxel, O. & Lyons, T. W. Iron isotope composition of some Archean and Proterozoic iron formations. Geochim. Cosmochim. Acta 80, 158–169 (2012).

    Article  Google Scholar 

  7. 7

    Kendall, B. et al. Pervasive oxygenation along late Archaean ocean margins. Nat. Geosci. 3, 647–652 (2010).

    Article  Google Scholar 

  8. 8

    Crowe, S. A. et al. Atmospheric oxygenation three billion years ago. Nature 501, 535–538 (2013).

    Article  Google Scholar 

  9. 9

    Kamber, B. S. Archean mafic-ultramafic oceanic landmasses and their effect on ocean-atmosphere chemistry. Chem. Geol. 274, 19–28 (2010).

    Article  Google Scholar 

  10. 10

    Kasting, J. F. What caused the rise of atmospheric O2? Chem. Geol. 362, 13–25 (2013).

    Article  Google Scholar 

  11. 11

    Lee, C.-T. et al. Two-step rise of atmospheric oxygen linked to the growth of continents. Nat. Geosci. 9, 417–424 (2016).

    Article  Google Scholar 

  12. 12

    Konhauser, K. O. et al. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458, 750–753 (2009).

    Article  Google Scholar 

  13. 13

    Condie, K. C. Earth as an Evolving Planetary SystemCh. 2, 1st edn, 11–58 (Elsevier, 2005).

    Google Scholar 

  14. 14

    Tang, M., Chen, K. & Rudnick, R. L. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351, 372–375 (2016).

    Article  Google Scholar 

  15. 15

    Kamber, B. The evolving nature of terrestrial crust from the Hadean, through the Archean, into the Proterozoic. Precambrian Res. 258, 48–82 (2015).

    Article  Google Scholar 

  16. 16

    Nutman, A. P. On the scarcity of >3900 Ma detrital zircons in >3500 Ma metasediments. Precambrian Res. 105, 93–114 (2001).

    Article  Google Scholar 

  17. 17

    Hawkesworth, C. J. et al. The generation and evolution of the continental crust. J. Geol. Soc. Lond. 167, 229–248 (2010).

    Article  Google Scholar 

  18. 18

    McLennan, S. M. & Taylor, S. R. Th and U in sedimentary rocks: crustal evolution and sedimentary recycling. Nature 285, 621–624 (1980).

    Article  Google Scholar 

  19. 19

    Taylor, S. R. & McLennan, S. M. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–265 (1995).

    Article  Google Scholar 

  20. 20

    Garçon, M. et al. Erosion of Archean continents: the Sm–Nd and Lu–Hf isotopic record of Barberton sedimentary rocks. Geochim. Cosmochim. Acta 206, 216–235 (2017).

    Article  Google Scholar 

  21. 21

    Rosing, M. T. & Frei, R. U-rich Archaean sea-floor sediments from Greenland indications of >3700 Ma oxygenic photosynthesis. Earth Planet. Sci. Lett. 217, 237–244 (2004).

    Article  Google Scholar 

  22. 22

    Oze, C., Bird, D. & Fendorf, S. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc. Natl Acad. Sci. USA 104, 6544–6549 (2007).

    Article  Google Scholar 

  23. 23

    Dhuime, B., Wuestefeld, A. & Hawkesworth, C. J. Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 8, 552–555 (2015).

    Article  Google Scholar 

  24. 24

    Næraa, T. et al. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature 485, 627–630 (2012).

    Article  Google Scholar 

  25. 25

    Flament, N., Coltice, N. & Rey, P. F. A case for late-Archean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett. 275, 326–336 (2008).

    Article  Google Scholar 

  26. 26

    Heubeck, C. & Lowe, D. R. Depositional and tectonic setting of the Archean Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Res. 68, 257–290 (1994).

    Article  Google Scholar 

  27. 27

    Kröner, A. & Compston, W. Ion microprobe ages of zircons from early Archean granite pebbles and greywacke, Barberton Greenstone Belt, Southern Africa. Precambrian Res. 38, 367–380 (1988).

    Article  Google Scholar 

  28. 28

    Frei, R. et al. Oxidative elemental cycling under the O2 Eoarchean atmosphere. Sci. Rep. 6, 21058 (2016).

    Article  Google Scholar 

  29. 29

    Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7, 283–286 (2014).

    Article  Google Scholar 

  30. 30

    Cottrell, E. & Kelley, K. A. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet. Sci. Lett. 305, 270–282 (2011).

    Article  Google Scholar 

  31. 31

    Sleep, N. H., Meibom, A., Fridriksson, T., Coleman, R. G. & Bird, D. K. H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl Acad. Sci. USA 101, 12818–12823 (2004).

    Article  Google Scholar 

  32. 32

    Frost, B. R. & Beard, J. S. On silica activity and serpentinization. J. Petrol. 48, 1351–1368 (2007).

    Article  Google Scholar 

  33. 33

    Berndt, M. E., Allen, D. E. & Seyfried, W. E. Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar. Geology 24, 351–354 (1996).

    Article  Google Scholar 

  34. 34

    McCollom, T. M. & Seewald, J. S. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim. Cosmochim. Acta 65, 3769–3778 (2001).

    Article  Google Scholar 

  35. 35

    Schrenk, M. O., Brazelton, W. J. & Lang, S. Q. in Carbon in Earth, Reviews in Mineralogy 75 (eds Hazen, R. M., Jones, A. P. & Baross, J. A.) 575–606 (Mineralogical Society of America, 2013).

    Book  Google Scholar 

  36. 36

    Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998).

    Article  Google Scholar 

  37. 37

    Catling, D. C., Zahnle, K. J. & McKay, C. P. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293, 839–843 (2001).

    Article  Google Scholar 

  38. 38

    Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007).

    Article  Google Scholar 

  39. 39

    Kelsey, C. H. Calculation of the CIPW norm. Mineral. Mag. 34, 276–282 (1965).

    Google Scholar 

  40. 40

    Ludwig, K. Berkeley Geochron. Center Spec. Publ. 5 User’s manual for Isoplot 3.75. 1–75 (Berkeley Geochronology Center, 2012).

    Google Scholar 

Download references

Acknowledgements

Careful and constructive comments from P. R. D. Mason and M. Tang, as well as fruitful discussions with E. Kooijman, allowed us to improve the quality of the manuscript substantially. The research was financially supported by the Natural Sciences and Engineering Research Council of Canada, Discovery Grant RGPIN-2015-04080 to M.A.S.

Author information

Affiliations

Authors

Contributions

M.A.S. conceived the concepts, compiled and evaluated all data, designed the figures, and wrote the first draft manuscript. K.M. provided crucial topical insight and co-wrote the manuscript.

Corresponding author

Correspondence to Matthijs A. Smit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1892 kb)

Supplementary Information

Supplementary Information (XLS 9172 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smit, M., Mezger, K. Earth’s early O2 cycle suppressed by primitive continents. Nature Geosci 10, 788–792 (2017). https://doi.org/10.1038/ngeo3030

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing