Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Millennial-scale iron fertilization of the eastern equatorial Pacific over the past 100,000 years

Matters Arising to this article was published on 27 February 2019

Abstract

The eastern equatorial Pacific Ocean plays a crucial role in global climate, as it is a substantial source of CO2 to the atmosphere and accounts for a significant portion of global new export productivity. Here we present a 100,000-year sediment core from the eastern equatorial Pacific, and reconstruct dust flux, export productivity and bottom-water oxygenation using excess-230Th-derived fluxes of 232Th and barium, and authigenic uranium concentrations, respectively. We find that during the last glacial period (71,000 to 41,000 years ago), increased delivery of dust to the eastern equatorial Pacific was coeval with North Atlantic Heinrich stadial events. Millennial-scale pulses of increased dust flux coincided with episodes of heightened biological productivity, suggesting that dissolution of dust released iron that promoted ocean fertilization. We also find that periods of low atmospheric CO2 concentrations were associated with suboxic conditions and increased storage of respired carbon in the deep eastern equatorial Pacific. Increases in CO2 concentrations during the deglaciation are coincident with increases in deep Pacific and Southern Ocean water oxygenation levels. We suggest that deep-ocean ventilation was a primary control on CO2 outgassing in this region, with superimposed pulses of high productivity providing a negative feedback.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Site locations and seasonal ITCZ migration.
Figure 2: Palaeoclimatic reconstructions in EEP marine sediment cores compared with the NGRIP record.
Figure 3: Palaeoclimatic reconstructions in EEP marine sediment core 17JC compared with ice core records.
Figure 4: Atmospheric CO2, bottom-water oxygenation and EEP oceanic pCO2 over the past 25 kyr.

References

  1. 1

    Meyers, S. R. Production and preservation of organic matter: the significance of iron. Paleoceanography 22, 1–16 (2007).

    Article  Google Scholar 

  2. 2

    Martin, J. H. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990).

    Article  Google Scholar 

  3. 3

    Pennington, J. T. et al. Primary production in the eastern tropical Pacific: a review. Prog. Oceanogr. 69, 285–317 (2006).

    Article  Google Scholar 

  4. 4

    Ziegler, M., Diz, P., Hall, I. R. & Zahn, R. Millennial-scale changes in atmospheric CO2 levels linked to the Southern Ocean carbon isotope gradient and dust flux. Nat. Geosci. 6, 457–461 (2013).

    Article  Google Scholar 

  5. 5

    Anderson, R. F., Fleisher, M. Q. & Lao, Y. Glacial–interglacial variability in the delivery of dust to the central equatorial Pacific Ocean. Earth Planet. Sci. Lett. 242, 406–414 (2006).

    Article  Google Scholar 

  6. 6

    Winckler, G., Anderson, R. F., Fleisher, M. Q., McGee, D. & Mahowald, N. Covariant glacial-interglacial dust fluxes in the equatorial Pacific and Antarctica. Science 320, 93–96 (2008).

    Article  Google Scholar 

  7. 7

    Murray, R. W., Leinen, M. & Knowlton, C. W. Links between iron input and opal deposition in the Pleistocene equatorial Pacific Ocean. Nat. Geosci. 5, 270–274 (2012).

    Article  Google Scholar 

  8. 8

    Costa, K. M. et al. No iron fertilization in the equatorial Pacific Ocean during the last ice age. Nature 529, 519–522 (2016).

    Article  Google Scholar 

  9. 9

    Winckler, G., Anderson, R. F., Jaccard, S. L. & Marcantonio, F. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years. Proc. Natl Acad. Sci. USA 113, 6119–6124 (2016).

    Article  Google Scholar 

  10. 10

    Dubois, N. et al. Millennial-scale variations in hydrography and biogeochemistry in the Eastern Equatorial Pacific over the last 100 kyr. Quat. Sci. Rev. 30, 210–223 (2011).

    Article  Google Scholar 

  11. 11

    Kienast, M. et al. Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation. Nature 443, 846–849 (2006).

    Article  Google Scholar 

  12. 12

    Kienast, S. S. et al. Near collapse of the meridional SST gradient in the eastern equatorial Pacific during Heinrich Stadial 1. Paleoceanography 28, 663–674 (2013).

    Article  Google Scholar 

  13. 13

    Rose, W. I., Conway, F. M., Pullinger, C. R., Deino, A. & McIntosh, W. C. An improved age framework for late Quaternary silicic eruptions in northern Central America. Bull. Volcanol. 61, 106–120 (1999).

    Article  Google Scholar 

  14. 14

    McGee, D. et al. Tracking eolian dust with helium and thorium: impacts of grain size and provenance. Geochim. Cosmochim. Acta 175, 47–67 (2016).

    Article  Google Scholar 

  15. 15

    Albani, S. et al. Paleodust variability since the Last Glacial Maximum and implications for iron inputs to the ocean. Geophys. Res. Lett. 43, 3944–3954 (2016).

    Article  Google Scholar 

  16. 16

    Mahowald, N. et al. Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res. 104, 15895–15916 (1999).

    Article  Google Scholar 

  17. 17

    Dymond, J., Suess, E. & Lyle, M. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography 7, 163–181 (1992).

    Article  Google Scholar 

  18. 18

    Paytan, A., Kastner, M. & Chavez, F. P. Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite. Science 274, 1355–1357 (1996).

    Article  Google Scholar 

  19. 19

    Francois, R., Honjo, S., Manganini, S. J. & Ravizza, G. E. Biogenic barium fluxes to the deep sea: implications for paleoproductivity reconstruction. Glob. Biogeochem. Cycles 9, 289–303 (1995).

    Article  Google Scholar 

  20. 20

    Pena, L. D., Cacho, I., Ferretti, P. & Hall, M. A. El Niño–Southern Oscillation-like variability during glacial terminations and interlatitudinal teleconnections. Paleoceanography 23, 1–8 (2008).

    Article  Google Scholar 

  21. 21

    deMenocal, P. B. et al. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 19, 347–361 (2000).

    Article  Google Scholar 

  22. 22

    McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

    Article  Google Scholar 

  23. 23

    Wang, Y. J. et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, 2345–2348 (2001).

    Article  Google Scholar 

  24. 24

    Burns, S. J., Fleitmann, D., Matter, A., Kramers, J. & Al-Subbary, A. A. Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13. Science 301, 1365–1367 (2003).

    Article  Google Scholar 

  25. 25

    Peterson, L. C., Haug, G. H., Hughen, K. A. & Röhl, U. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290, 1947–1951 (2000).

    Article  Google Scholar 

  26. 26

    Donohoe, A., Marshall, J., Ferreira, D. & Mcgee, D. The relationship between ITCZ location and cross-equatorial atmospheric heat transport: from the seasonal cycle to the Last Glacial Maximum. J. Clim. 26, 3597–3618 (2013).

    Article  Google Scholar 

  27. 27

    Kanner, L. C., Burns, S. J., Cheng, H. & Edwards, R. L. High-latitude forcing of the South American summer monsoon during the last glacial. Science 335, 570–573 (2012).

    Article  Google Scholar 

  28. 28

    Wang, X. et al. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432, 740–743 (2004).

    Article  Google Scholar 

  29. 29

    Takahashi, K. & Battisti, D. S. Processes controlling the mean tropical Pacific precipitation pattern. Part I: the Andes and the eastern Pacific ITCZ. J. Clim. 20, 3434–3451 (2007).

    Article  Google Scholar 

  30. 30

    Bradtmiller, L. I., Anderson, R. F., Sachs, J. P. & Fleisher, M. Q. A deeper respired carbon pool in the glacial equatorial Pacific Ocean. Earth Planet. Sci. Lett. 299, 417–425 (2010).

    Article  Google Scholar 

  31. 31

    Jaccard, S. L. et al. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool. Earth Planet. Sci. Lett. 277, 156–165 (2009).

    Article  Google Scholar 

  32. 32

    Jaccard, S. L., Galbraith, E. D., Martínez-García, A. & Anderson, R. F. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age. Nature 530, 207–210 (2016).

    Article  Google Scholar 

  33. 33

    Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 . Science 323, 1443–1448 (2009).

    Article  Google Scholar 

  34. 34

    Denton, G. H. et al. The last glacial termination. Science 328, 1652–1656 (2010).

    Article  Google Scholar 

  35. 35

    Martínez-Botí, M. A. et al. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation. Nature 518, 219–222 (2015).

    Article  Google Scholar 

  36. 36

    Takahashi, T. et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res. II 56, 554–577 (2009).

    Article  Google Scholar 

  37. 37

    Garcia, H. E. et al. World Ocean Atlas 2013, Volume 4: Dissolved Inorganic Nutrients (Phosphate, Nitrate, Silicate) (ed. Levitus, S.) Vol. 76 (A. Mishonov Technical Ed., NOAA Atlas NESDIS, 2014).

    Google Scholar 

  38. 38

    Johnsen, S. J. & North Greenland Ice Core Project members, High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).

  39. 39

    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 1–17 (2005).

    Google Scholar 

  40. 40

    Rasmussen, T. L. & Thomsen, E. The role of the North Atlantic Drift in the millennial timescale glacial climate fluctuations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 210, 101–116 (2004).

    Article  Google Scholar 

  41. 41

    Bereiter, B et al. Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw. Proc. Natl Acad. Sci. USA 109, 9755–9760 (2012).

    Article  Google Scholar 

  42. 42

    Stuiver, M. & Reimer, P. J. Extended 14 C data base and revised CALIB 3.0 14 C age calibration program. Radiocarbon 35, 215–230 (1993).

    Article  Google Scholar 

  43. 43

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP . 55, 1869–1887 (2013).

  44. 44

    Bacon, M. P. & Anderson, R. F. Distribution of thorium isotopes between dissolved and particulate forms in the deep sea. Geophys. Res. Lett. 87, 2045–2056 (1982).

    Article  Google Scholar 

  45. 45

    Henderson, G. M. Seawater (234U/238U) during the last 800 thousand years. Earth Planet. Sci. Lett. 199, 97–110 (2002).

    Article  Google Scholar 

  46. 46

    Henderson, G. M. & Anderson, R. F. The U-series toolbox for paleoceanography. Rev. Mineral. Geochem. 52, 493–531 (2003).

    Article  Google Scholar 

  47. 47

    Suman, D. O. & Bacon, M. P. Variations in Holocene sedimentation in the North American Basin determined by 230Th measurements. Deep-Sea Res. 36, 869–878 (1989).

    Article  Google Scholar 

  48. 48

    Singh, A. K., Marcantonio, F. & Lyle, M. Sediment focusing in the Panama Basin, eastern equatorial Pacific Ocean. Earth Planet. Sci. Lett. 309, 33–44 (2011).

    Article  Google Scholar 

  49. 49

    Marcantonio, F., Lyle, M. & Ibrahim, R. Particle sorting during sediment redistribution processes and the effect on 230Th-normalized mass accumulation rates. Geophys. Res. Lett. 41, 5547–5554 (2014).

    Article  Google Scholar 

  50. 50

    Taylor, S. R. & McLennan, S. M. The Continental Crust: Its Composition and Evolution (Blackwell Scientific, 1985).

    Google Scholar 

  51. 51

    McGee, D., Marcantonio, F. & Lynch-Stieglitz, J. Deglacial changes in dust flux in the eastern equatorial Pacific. Earth Planet. Sci. Lett. 257, 215–230 (2007).

    Article  Google Scholar 

  52. 52

    Anderson, R. F. Concentration, vertical flux, and remineralization of particulate uranium in seawater. Geochim. Cosmochim. Acta 46, 1293–1299 (1982).

    Article  Google Scholar 

  53. 53

    Griffith, E. M. & Paytan, A. Barite in the ocean—occurrence, geochemistry and palaeoceanographic applications. Sedimentology 59, 1817–1835 (2012).

    Article  Google Scholar 

  54. 54

    Barnes, C. E. & Cochran, J. K. Uranium removal in oceanic sediments and the oceanic U balance. Earth Planet. Sci. Lett. 97, 94–101 (1990).

    Article  Google Scholar 

  55. 55

    Colley, S., Thomson, J., Wilson, T. R. S. & Higgs, N. C. Post-depositional migration of elements during diagenesis in brown clay and turbidite sequences in the North East Atlantic. Geochim. Cosmochim. Acta 48, 1223–1235 (1984).

    Article  Google Scholar 

  56. 56

    Zheng, Y., Anderson, R. F., van Geen, A. & Fleisher, M. Q. Remobilization of authigenic uranium in marine sediments by bioturbation. Geochim. Cosmochim. Acta 66, 1759–1772 (2002).

    Article  Google Scholar 

  57. 57

    Thomson, J., Higgs, N.C., Croudace, I. W., Colley, S. & Hydes, D. J. Redox zonation of elements at an oxic/post-oxic boundary in deep-sea sediments. Geochim. Cosmochim. Acta 57, 579–595 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by NSF grant OCE-0851056 to F.M. and M.L. Additional financial support was provided to F.M. by the Jane and R. Ken Williams Chair in Ocean Drilling Science, Technology, and Education. We thank L. Romero for her technical assistance in the laboratory. We thank A. Erhardt for constructive review.

Author information

Affiliations

Authors

Contributions

M.R.L. and F.M. designed the study. M.R.L. sampled the core, and performed the U–Th isotope analyses. M.R.L. and M.M.W. performed the Ba analyses. M.R.L. separated the foraminifera for oxygen-isotope analysis. M.R.L. and J.E.H. separated the foraminifera for radiocarbon analysis. All authors contributed to interpretation of the data. M.R.L. and F.M. wrote the manuscript, and all authors provided comments and revisions.

Corresponding author

Correspondence to Franco Marcantonio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1039 kb)

Supplementary Information

Supplementary Information (XLSX 65 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loveley, M., Marcantonio, F., Wisler, M. et al. Millennial-scale iron fertilization of the eastern equatorial Pacific over the past 100,000 years. Nature Geosci 10, 760–764 (2017). https://doi.org/10.1038/ngeo3024

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing