Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Formation of plateau landscapes on glaciated continental margins

Abstract

Low-relief plateaus separated by deeply incised fjords are hallmarks of glaciated, passive continental margins. Spectacular examples fringe the once ice-covered North Atlantic coasts of Greenland, Norway and Canada, but low-relief plateau landscapes also underlie present-day ice sheets in Antarctica and Greenland. Dissected plateaus have long been viewed as the outcome of selective linear erosion by ice sheets that focus incision in glacial troughs, leaving the intervening landscapes essentially unaffected. According to this hypothesis, the plateaus are remnants of preglacial low-relief topography. However, here we use computational experiments to show that, like fjords, plateaus are emergent properties of long-term ice-sheet erosion. Ice sheets can either increase or decrease subglacial relief depending on the wavelength of the underlying topography, and plateau topography arises dynamically from evolving feedbacks between topography, ice dynamics and erosion over million-year timescales. This new mechanistic explanation for plateau formation opens the possibility of plateaus contributing significantly to accelerated sediment flux at the onset of the late Cenozoic glaciations, before becoming stable later in the Quaternary.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of high-elevation plateau landscapes in the North Atlantic region.
Figure 2: Modelled evolution of a continental margin landscape undergoing ice-sheet erosion and flexural isostasy.
Figure 3: Evolution of local topographic relief in response to ice-sheet erosion.
Figure 4: Erosion history and cosmogenic nuclide apparent exposure ages.

Similar content being viewed by others

References

  1. Kessler, M. A., Anderson, R. S. & Briner, J. P. Fjord insertion into continental margins driven by topographic steering of ice. Nat. Geosci. 1, 365–369 (2008).

    Article  Google Scholar 

  2. Refsnider, K. A. & Miller, G. H. Reorganization of ice sheet flow patterns in Arctic Canada and the mid-Pleistocene transition. Geophys. Res. Lett. 37, L13502 (2010).

    Article  Google Scholar 

  3. Sugden, D. E. in Progress in Geomorphology Vol. 7 (eds Brown, E. H. & Waters, R. S.) 177–195 (Institute of British Geographers Special Publications, 1974).

    Google Scholar 

  4. Sugden, D. E. Glacial erosion by the Laurentide ice sheet. J. Glaciol. 20, 367–391 (1978).

    Article  Google Scholar 

  5. Nesje, A. & Whillans, I. M. Erosion of Sognefjord, Norway. Geomorphology 9, 33–45 (1994).

    Article  Google Scholar 

  6. Staiger, J. K. W. et al. Quaternary relief generation by polythermal glacier ice. Earth Surf. Process. Landforms 30, 1145–1159 (2005).

    Article  Google Scholar 

  7. Kleman, J. & Stroeven, A. P. Preglacial surface remnants and Quaternary glacial regimes in northwestern Sweden. Geomorphology 19, 35–54 (1997).

    Article  Google Scholar 

  8. Fabel, D. et al. Landscape preservation under Fennoscandian ice sheets determined from in situ produced 10Be and 26Al. Earth Planet. Sci. Lett. 201, 397–406 (2002).

    Article  Google Scholar 

  9. Corbett, L. B., Bierman, P. R., Graly, J. A., Neumann, T. A. & Rood, D. H. Constraining landscape history and glacial erosivity using paired cosmogenic nuclides in Upernavik, northwest Greenland. Geol. Soc. Am. Bull. 125, 1539–1553 (2013).

    Article  Google Scholar 

  10. Briner, J. P. et al. Using in situ cosmogenic 10Be, 14C, and 26Al to decipher the history of polythermal ice sheets on Baffin Island, Arctic Canada. Quat. Geochronol. 19, 4–13 (2014).

    Article  Google Scholar 

  11. Li, Y. et al. Ice sheet erosion patterns in valley systems in northern Sweden investigated using cosmogenic nuclides. Earth Surf. Process. Landforms 30, 1039–1049 (2005).

    Article  Google Scholar 

  12. Briner, J. P., Miller, G. H., Davis, P. T. & Finkel, R. C. Cosmogenic radionuclides from fjord landscapes support differential erosion by overriding ice sheets. GSA Bull. 118, 406–420 (2006).

    Google Scholar 

  13. Lidmar-Bergström, K., Ollier, C. D. & Sulebak, J. R. Landforms and uplift history of southern Norway. Glob. Planet. Change 24, 211–231 (2000).

    Article  Google Scholar 

  14. Steer, P., Huismans, R. S., Valla, P. G., Gac, D. & Herman, F. Bimodal Plio-Quaternary glacial erosion of fjords and low-relief surfaces in Scandinavia. Nat. Geosci. 5, 635–639 (2012).

    Article  Google Scholar 

  15. Nielsen, S. B. et al. The evolution of western Scandinavian topography: a review of Neogene uplift versus the ICE (isostasy-climate-erosion) hypothesis. J. Geodynam. 47, 72–95 (2009).

    Article  Google Scholar 

  16. Hall, A. M., Ebert, K., Kleman, J., Nesje, A. & Ottesen, D. Selective glacial erosion on the Norwegian passive margin. Geology 41, 1203–1206 (2013).

    Article  Google Scholar 

  17. Ballantyne, C. K. Age and significance of mountain-top detritus. Permafr. Periglac. Process. 9, 327–345 (1998).

    Article  Google Scholar 

  18. Fjellanger, J. et al. Glacial survival of blockfields on the Varanger Peninsula, northern Norway. Geomorphology 82, 255–272 (2006).

    Article  Google Scholar 

  19. Marquette, G. C. et al. Felsenmeer persistence under non-erosive ice in the Torngat and Kaumajet mountains, Quebec and Labrador, as determined by soil weathering and cosmogenic nuclide exposure dating. Can. J. Earth Sci. 41, 19–38 (2004).

    Article  Google Scholar 

  20. Goodfellow, B. W. et al. Arctic-alpine blockfields in the northern Swedish Scandes: late Quaternary—not Neogene. Earth Surf. Dynam. 2, 383–401 (2014).

    Article  Google Scholar 

  21. Rea, B. R., Whalley, B. W., Rainey, M. M. & Gordon, J. E. Blockfields, old or new? Evidence and implications from some plateaus in northern Norway. Geomorphology 15, 109–121 (1996).

    Article  Google Scholar 

  22. Sugden, D. E. & John, B. S. Glaciers and Landscape: a Geomorphological Approach (Edward Arnold, 1976).

    Google Scholar 

  23. Egholm, D. L., Knudsen, M. F., Clark, C. D. & Lesemann, J. E. Modeling the flow of glaciers in steep terrains: the integrated second-order shallow ice approximation (iSOSIA). J. Geophys. Res. 116, F02012 (2011).

    Article  Google Scholar 

  24. Hallet, B. A theoretical model of glacial abrasion. J. Glaciol. 23, 39–50 (1979).

    Article  Google Scholar 

  25. Koppes, M. et al. Observed latitudinal variations in erosion as a function of glacier dynamics. Nature 526, 100–103 (2015).

    Article  Google Scholar 

  26. Herman, F. et al. Erosion by an Alpine glacier. Science 350, 193–195 (2015).

    Article  Google Scholar 

  27. Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  28. Jamieson, S. S. R., Hulton, N. R. J. & Hagdorn, M. Modelling landscape evolution under ice sheets. Geomorphology 97, 91–108 (2008).

    Article  Google Scholar 

  29. Gudmundsson, G. H. Transmission of basal variability to a glacier surface. J. Geophys. Res. 108, 2253 (2003).

    Article  Google Scholar 

  30. Pelletier, J. D., Comeau, D. & Kargel, J. Controls of glacial valley spacing on Earth and Mars. Geomorphology 116, 189–201 (2010).

    Article  Google Scholar 

  31. Egholm, D. L., Pedersen, V. K., Knudsen, M. F. & Larsen, N. K. On the importance of higher order ice dynamics for glacial landscape evolution. Geomorphology 141–142, 67–80 (2012).

    Article  Google Scholar 

  32. Reusch, H. Nogle Bidrag till Forstaalesen af hvorledes Norges Dale og Fjelde er blevne til. Norges Geologiske Undersøkelse 32, 124–263 (1901).

    Google Scholar 

  33. Small, E. E., Anderson, R. S. & Hancock, G. S. Estimates of the rate of regolith production using 10Be and 26Al from an alpine hillslope. Geomorphology 27, 131–150 (1999).

    Article  Google Scholar 

  34. Anderson, R. S. Modeling the tor-dotted crests, bedrock edges, and parabolic profiles of high alpine surfaces of the Wind River Range, Wyoming. Geomorphology 46, 35–58 (2002).

    Article  Google Scholar 

  35. Egholm, D. L., Andersen, J. L., Knudsen, M. F., Jansen, J. D. & Nielsen, S. B. The periglacial engine of mountain erosion—Part 2: modelling large-scale landscape evolution. Earth Surface Dynam. 3, 463–482 (2015).

    Article  Google Scholar 

  36. Hallet, B., Hunter, L. & Bogen, J. Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Glob. Planet. Change 12, 213–235 (1996).

    Article  Google Scholar 

  37. Strunk, A. et al. One million years of glaciation and denudation history in West Greenland. Nat. Commun. 8, 14199 (2017).

    Article  Google Scholar 

  38. Zhang, P., Molnar, P. & Downs, W. R. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 410, 891–897 (2001).

    Article  Google Scholar 

  39. Linge, H. et al. In situ10Be exposure ages from southeastern Norway: implications for the geometry of the Weichselian Scandinavian ice sheet. Quat. Sci. Rev. 25, 1097–1109 (2006).

    Article  Google Scholar 

  40. Sugden, D. E. et al. Selective glacial erosion and weathering zones in the coastal mountains of Marie Byrd Land, Antarctica. Geomorphology 67, 317–334 (2005).

    Article  Google Scholar 

  41. Young, N. E., Briner, J. P., Maurer, J. & Schaefer, J. M. 10Be measurements in bedrock constrain erosion beneath the Greenland Ice Sheet margin. Geophys. Res. Lett. 43, 2016GL070258 (2016).

    Google Scholar 

  42. Gjermundsen, E. F. et al. Minimal erosion of Arctic alpine topography during late Quaternary glaciation. Nat. Geosci. 8, 879–792 (2015).

    Google Scholar 

  43. Krabbendam, M. & Bradwell, T. Quaternary evolution of glaciated gneiss terrains: pre-glacial weathering vs. glacial erosion. Quat. Sci. Rev. 95, 20–42 (2014).

    Article  Google Scholar 

  44. Dühnforth, M., Anderson, R. S., Ward, D. & Stock, G. M. Bedrock fracture control of glacial erosion processes and rates. Geology 38, 423–426 (2010).

    Article  Google Scholar 

  45. Krabbendam, M. & Glasser, N. F. Glacial erosion and bedrock properties in NW Scotland: abrasion and plucking, hardness and joint spacing. Geomorphology 130, 374–383 (2011).

    Article  Google Scholar 

  46. Fjellanger, J. & Etzelmüller, B. Stepped palaeosurfaces in southern Norway—interpretation of DEM-derived topographic profiles. Nor. J. Geogr. 57, 102–110 (2003).

    Google Scholar 

  47. Swift, D. A. et al. A reassessment of the role of ice sheet glaciation in the long-term evolution of the East Greenland fjord region. Geomorphology 97, 109–125 (2008).

    Article  Google Scholar 

  48. Whipple, K. X. Bedrock rivers and the geomorphology of active orogens. Annu. Rev. Earth Planet. Sci. 32, 151–185 (2004).

    Article  Google Scholar 

  49. Budd, W. F., Keage, P. L. & Blundy, N. A. Empirical studies of ice sliding. J. Glaciol. 23, 157–170 (1979).

    Article  Google Scholar 

  50. Schoof, C. Ice-sheet acceleration driven by melt supply variability. Nature 468, 803–806 (2010).

    Article  Google Scholar 

  51. Egholm, D. L., Pedersen, V. K., Knudsen, M. F. & Larsen, N. K. Coupling the flow of ice, water, and sediment in a glacial landscape evolution model. Geomorphology 141–142, 47–66 (2012).

    Article  Google Scholar 

  52. Ugelvig, S. V., Egholm, D. L. & Iverson, N. R. Glacial landscape evolution by subglacial quarrying: a multiscale computational approach. J. Geophys. Res. 121, 2042–2068 (2016).

    Article  Google Scholar 

  53. Knudsen, M. F. et al. A multi-nuclide approach to constrain landscape evolution and past erosion rates in previously glaciated terrains. Quat. Geochronol. 30, 100–113 (2015).

    Article  Google Scholar 

  54. Balco, G., Stone, J. O., Lifton, N. A. & Dunai, T. J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat. Geochronol. 3, 174–195 (2008).

    Article  Google Scholar 

  55. Heisinger, B. et al. Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons. Earth Planet. Sci. Lett. 200, 357–369 (2002).

    Article  Google Scholar 

  56. Lifton, N., Sato, T. & Dunai, T. J. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet. Sci. Lett. 386, 149–160 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Danish Council for Independent Research (grant DFF-6108-00226) and Aarhus University Research Foundation. J.D.J. was supported by the Australian Research Council (DP130104023) and a Marie Słodowsk-Curie Fellowship. V.K.P. acknowledges financial support from the Research Council of Norway. M.F.K. and N.K.L. were supported by the Villum Foundation. We thank A. Margreth and R. S. Anderson for constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

D.L.E. designed the study and developed the computational modelling scheme. D.L.E. and C.F.B. performed the computational experiments. D.L.E., J.D.J. and C.F.B. interpreted results. D.L.E., J.D.J., C.F.B. and V.K.P. wrote the paper with contributions from co-authors.

Corresponding author

Correspondence to David L. Egholm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 797 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egholm, D., Jansen, J., Brædstrup, C. et al. Formation of plateau landscapes on glaciated continental margins. Nature Geosci 10, 592–597 (2017). https://doi.org/10.1038/ngeo2980

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2980

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing