Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cumulate causes for the low contents of sulfide-loving elements in the continental crust

Abstract

Despite the economic importance of chalcophile (sulfide-loving) and siderophile (metal-loving) elements (CSEs), it is unclear how they become enriched or depleted in the continental crust, compared with the oceanic crust. This is due in part to our limited understanding of the partitioning behaviour of the CSEs. Here I compile compositional data for mid-ocean ridge basalts and subduction-related volcanic rocks. I show that the mantle-derived melts that contribute to oceanic and continental crust formation rarely avoid sulfide saturation during cooling in the crust and, on average, subduction-zone magmas fractionate sulfide at the base of the continental crust prior to ascent. Differentiation of mantle-derived melts enriches lower crustal sulfide- and silicate-bearing cumulates in some CSEs compared with the upper crust. This storage predisposes the cumulate-hosted compatible CSEs (such as Cu and Au) to be recycled back into the mantle during subduction and delamination, resulting in their low contents in the bulk continental crust and potentially contributing to the scarcity of ore deposits in the upper continental crust. By contrast, differentiation causes the upper oceanic and continental crust to become enriched in incompatible CSEs (such as W) compared with the lower oceanic and continental crust. Consequently, incompatible CSEs are predisposed to become enriched in subduction-zone magmas that contribute to continental crust formation and are less susceptible to removal from the continental crust via delamination compared with the compatible CSEs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global MORB log[Cu] versus [MgO].
Figure 2: CSE partitioning during MORB differentiation.
Figure 3: CSE partitioning during crustal differentiation.
Figure 4: Parental-MORB-normalized trace element patterns.
Figure 5: Parental-MORB-normalized trace element patterns.

Similar content being viewed by others

References

  1. Palme, H. & O’Neill, H. St. C. in Treatise on Geochemistry: The Mantle and Core (ed. Carlson, R. W.) 1–39 (Elsevier–Pergamon, 2014).

    Book  Google Scholar 

  2. Lee, C.-T. A. et al. Copper systematics in arc magmas and implications for crust-mantle differentiation. Science 336, 64–68 (2012).

    Article  Google Scholar 

  3. Lee, C.-T. A., Leeman, W. P., Canil, D. & Li, Z.-X.A. Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J. Petrol. 46, 2313–2336 (2005).

    Article  Google Scholar 

  4. Nielsen, S. G. et al. Tracking along-arc sediment inputs to the Aleutian arc using thallium isotopes. Geochim. Cosmochim. Acta 181, 217–237 (2016).

    Article  Google Scholar 

  5. Wilkinson, J. J. Triggers for the formation of porphyry ore deposits in magmatic arcs. Nat. Geosci. 6, 917–925 (2013).

    Article  Google Scholar 

  6. Timm, C., de Ronde, C. E. J., Leybourne, M. I., Layton-Matthews, D. & Graham, I. J. Sources of chalcophile and siderophile elements in kermadec arc lavas. Econ. Geol. 107, 1527–1538 (2012).

    Article  Google Scholar 

  7. Jenner, F. E., O’Neill, H. St. C., Arculus, R. J. & Mavrogenes, J. A. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag, and Cu. J. Petrol. 51, 2445–2464 (2010).

    Article  Google Scholar 

  8. Jenner, F. E. et al. The competing effects of sulfide saturation versus degassing on the behavior of the chalcophile elements during the differentiation of hydrous melts. Geochem. Geophys. Geosyst. 16, 1490–1507 (2015).

    Article  Google Scholar 

  9. Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5, Q05004 (2004).

    Article  Google Scholar 

  10. Richards, J. P. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Lithos 233, 27–45 (2015).

    Article  Google Scholar 

  11. Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J.-G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013).

    Article  Google Scholar 

  12. Arevalo, R. & McDonough, W. F. Chemical variations and regional diversity observed in MORB. Chem. Geol. 271, 70–85 (2010).

    Article  Google Scholar 

  13. Jenner, F. E. & Arevalo, R. D. Major and trace element analysis of natural and experimental igneous systems using LA–ICP–MS. Elements 12, 311–316 (2016).

    Article  Google Scholar 

  14. Yi, W. et al. Cadmium, indium, tin, tellurium, and sulfur in oceanic basalts: implications for chalcophile element fractionation in the Earth. J. Geophys. Res. 105, 18927–18948 (2000).

    Article  Google Scholar 

  15. Jochum, K. P. & Hofmann, A. W. Constraints on Earth evolution from antimony in mantle-derived rocks. Chem. Geol. 139, 39–49 (1997).

    Article  Google Scholar 

  16. Noll, J. P. D., Newsom, H. E., Leeman, W. P. & Ryan, J. G. The role of hydrothermal fluids in the production of subduction zone magmas: evidence from siderophile and chalcophile trace elements and boron. Geochim. Cosmochim. Acta 60, 587–611 (1996).

    Article  Google Scholar 

  17. Chiaradia, M. Copper enrichment in arc magmas controlled by overriding plate thickness. Nat. Geosci. 7, 43–46 (2014).

    Article  Google Scholar 

  18. Sun, W. et al. Porphyry deposits and oxidized magmas. Ore Geol. Rev. 65, Part 1, 97–131 (2015).

    Article  Google Scholar 

  19. Witt-Eickschen, G., Palme, H., O’Neill, H. St. C. & Allen, C. M. The geochemistry of the volatile trace elements As, Cd, Ga, In and Sn in the Earth’s mantle: new evidence from in situ analyses of mantle xenoliths. Geochim. Cosmochim. Acta 73, 1755–1778 (2009).

    Article  Google Scholar 

  20. Tanner, D., Mavrogenes, J. A., Arculus, R. J. & Jenner, F. E. Trace element stratigraphy of the Bellevue Core, Northern Bushveld: multiple magma injections obscured by diffusive processes. J. Petrol. 55, 859–882 (2014).

    Article  Google Scholar 

  21. Jenner, F. E. & O’Neill, H. St. C. Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem. Geophys. Geosyst. 13, Q02005 (2012).

    Google Scholar 

  22. Patten, C., Barnes, S.-J., Mathez, E. A. & Jenner, F. E. Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets. Chem. Geol. 358, 170–188 (2013).

    Article  Google Scholar 

  23. Kiseeva, E. S. & Wood, B. J. The effects of composition and temperature on chalcophile and lithophile element partitioning into magmatic sulphides. Earth Planet. Sci. Lett. 424, 280–294 (2015).

    Article  Google Scholar 

  24. Li, Y. & Audétat, A. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth Planet. Sci. Lett. 355–356, 327–340 (2012).

    Article  Google Scholar 

  25. Jenner, F. E. et al. Chalcophile element systematics in volcanic glasses from the northwestern Lau Basin. Geochem. Geophys. Geosyst. 13, Q06014 (2012).

    Google Scholar 

  26. Rudnick, R. L. & Gao, S. in Treatise on Geochemistry: The Crust (ed. Rudnick, R. L.) 1–64 (Elsevier, 2003).

    Book  Google Scholar 

  27. Dare, S. S., Barnes, S.-J. & Prichard, H. The distribution of platinum group elements (PGE) and other chalcophile elements among sulfides from the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada, and the origin of palladium in pentlandite. Miner. Deposita 45, 765–793 (2010).

    Article  Google Scholar 

  28. Freymuth, H., Vils, F., Willbold, M., Taylor, R. N. & Elliott, T. Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc. Earth Planet. Sci. Lett. 432, 176–186 (2015).

    Article  Google Scholar 

  29. Freymuth, H., Ivko, B., Gill, J. B., Tamura, Y. & Elliott, T. Thorium isotope evidence for melting of the mafic oceanic crust beneath the Izu arc. Geochim. Cosmochim. Acta 186, 49–70 (2016).

    Article  Google Scholar 

  30. Elliott, T., Plank, T., Zindler, A., White, W. & Bourdon, B. Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res. 102, 14991–15019 (1997).

    Article  Google Scholar 

  31. Prytulak, J., Nielsen, S. G., Plank, T., Barker, M. & Elliott, T. Assessing the utility of thallium and thallium isotopes for tracing subduction zone inputs to the Mariana arc. Chem. Geol. 345, 139–149 (2013).

    Article  Google Scholar 

  32. White, W. M. & Klein, E. M. in Treatise on Geochemistry: The Crust 2nd edn (eds Turekian, K. & Holland, H.) 457–496 (Elsevier, 2014).

    Book  Google Scholar 

  33. O’Neill, H. St. C. & Jenner, F. E. The global pattern of trace-element distributions in ocean floor basalts. Nature 491, 698–704 (2012).

    Article  Google Scholar 

  34. O’Neill, H. St. C. & Jenner, F. E. Causes of the compositional variability among ocean floor basalts. J. Petrol. 57, 2163–2194 (2017).

    Article  Google Scholar 

  35. Li, Y. Chalcophile element partitioning between sulfide phases and hydrous mantle melt: applications to mantle melting and the formation of ore deposits. J. Asian Earth Sci. 94, 77–93 (2014).

    Article  Google Scholar 

  36. Zhang, Z. & Hirschmann, M. M. Experimental constraints on mantle sulfide melting up to 8 GPa. Am. Miner. 101, 181–192 (2016).

    Article  Google Scholar 

  37. Adam, J. & Green, T. Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contrib. Mineral. Petrol. 152, 1–17 (2006).

    Article  Google Scholar 

  38. Wang, Z. & Becker, H. Abundances of Ag and Cu in mantle peridotites and the implications for the behavior of chalcophile elements in the mantle. Geochim. Cosmochim. Acta 160, 209–226 (2015).

    Article  Google Scholar 

  39. Pearce, J. A., Stern, R. C., Bloomer, S. H. & Fryer, P. Geochemical mapping of the Mariana arc-basin system: implications for the nature and distribution of subduction components. Geochem. Geophys. Geosyst. 6, Q07006 (2005).

    Article  Google Scholar 

  40. Guillot, S. & Hattori, K. Serpentinites: essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life. Elements 9, 95–98 (2013).

    Article  Google Scholar 

  41. Peucker-Ehrenbrink, B., Hofmann, A. W. & Hart, S. R. Hydrothermal lead transfer from mantle to continental crust: the role of metalliferous sediments. Earth Planet. Sci. Lett. 125, 129–142 (1994).

    Article  Google Scholar 

  42. Staudigel, H. Treatise on Geochemistry: The Crust 2nd edn (eds Holland, H. D. & Turekian, K. K.) 583–606 (Elsevier, 2014).

  43. Tomkins, A. G., Pattison, D. R. M. & Frost, B. R. On the initiation of metamorphic sulfide anatexis. J. Petrol. 48, 511–535 (2007).

    Article  Google Scholar 

  44. Matjuschkin, V., Blundy, J. D. & Brooker, R. A. The effect of pressure on sulphur speciation in mid- to deep-crustal arc magmas and implications for the formation of porphyry copper deposits. Contrib. Mineral. Petrol. 171, 1–25 (2016).

    Article  Google Scholar 

  45. Wallace, P. J. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140, 217–240 (2005).

    Article  Google Scholar 

  46. Hermann, J. Allanite: thorium and light rare element carrier in subducted crust. Chem. Geol. 192, 287–306 (2002).

    Article  Google Scholar 

  47. Blichert-Toft, J. et al. Large-scale tectonic cycles in Europe revealed by distinct Pb isotope provinces. Geochem. Geophys. Geosyst. 17, 3854–3864 (2016).

    Article  Google Scholar 

  48. Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).

    Article  Google Scholar 

  49. Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H. & Wallace, P. J. Why do mafic arc magmas contain 4 wt% water on average? Earth Planet. Sci. Lett. 364, 168–179 (2013).

    Article  Google Scholar 

  50. Simons, B., Andersen, J. C. Ø., Shail, R. K. & Jenner, F. E. Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous Early Permian Variscan granites of the Cornubian Batholith: precursor processes to magmatic-hydrothermal mineralisation. Lithos 278–281, 491–512 (2017).

    Article  Google Scholar 

  51. Jenner, F. E. & O’Neill, H. S. C. Major and trace analysis of basaltic glasses by laser-ablation ICP-MS. Geochem. Geophys. Geosyst. 13, Q03003 (2012).

    Google Scholar 

  52. Jenner, F. E., Holden, P., Mavrogenes, J. A., O’Neill, H. S. C. & Allen, C. Determination of selenium concentrations in NIST SRM 610, 612, 614 and geological glass reference materials using the electron probe, LA-ICP-MS and SHRIMP II. Geostand. Geoanal. Res. 33, 309–317 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

H. O’Neill, J. Prytulak, R. Rudnick, H. Williams, S. Kelley, E. Hauri, J. Bryce, T. Elliott, J. Blundy, N. Rogers, N. Harris, R. Carlson and C. Hawkesworth are thanked for motivational comments that helped improve my ability to deliver an accessible manuscript. I would like to thank the NERC (grant reference NE/M000427/1 and NE/M010848/1) for funding. B. Wood, Y. Li, A. Hoffmann and F. Albaréde are thanked for constructive reviews and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances Elaine Jenner.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 315 kb)

Supplementary Information

Supplementary Information (XLSX 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenner, F. Cumulate causes for the low contents of sulfide-loving elements in the continental crust. Nature Geosci 10, 524–529 (2017). https://doi.org/10.1038/ngeo2965

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2965

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing