Abstract
Magmatic processes on Earth govern the mass, energy and chemical transfer between the mantle, crust and atmosphere. To understand magma storage conditions in the crust that ultimately control volcanic activity and growth of continents, an evaluation of the mass and heat budget of the entire crustal column during magmatic episodes is essential. Here we use a numerical model to constrain the physical conditions under which both lower and upper crustal magma bodies form. We find that over long durations of intrusions (greater than 105 to 106 yr), extensive lower crustal mush zones develop, which modify the thermal budget of the upper crust and reduce the flux of magma required to sustain upper crustal magma reservoirs. Our results reconcile physical models of magma reservoir construction and field-based estimates of intrusion rates in numerous volcanic and plutonic localities. Young igneous provinces (less than a few hundred thousand years old) are unlikely to support large upper crustal reservoirs, whereas longer-lived systems (active for longer than 1 million years) can accumulate magma and build reservoirs capable of producing super-eruptions, even with intrusion rates smaller than 10−3 to 10−2 km3 yr−1. Hence, total duration of magmatism should be combined with the magma intrusion rates to assess the capability of volcanic systems to form the largest explosive eruptions on Earth.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Supergiant porphyry copper deposits are failed large eruptions
Communications Earth & Environment Open Access 06 May 2022
-
Timescales and thermal evolution of large silicic magma reservoirs during an ignimbrite flare-up: perspectives from zircon
Contributions to Mineralogy and Petrology Open Access 19 November 2021
-
The Quaternary Kurobegawa Granite: an example of a deeply dissected resurgent pluton
Scientific Reports Open Access 11 November 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Sparks, R., Huppert, H., Turner, J., Sakuyama, M. & O’Hara, M. The fluid dynamics of evolving magma chambers [and discussion]. Phil. Trans. R. Soc. Lond. A 310, 511–534 (1984).
Marsh, B. D. Magma chambers. Annu. Rev. Earth Planet. Sci. 17, 439–472 (1989).
Bachmann, O. & Huber, C. Silicic magma reservoirs in the Earth’s crust. Am. Mineral. 101, 2377–2404 (2016).
Bachmann, O. & Bergantz, G. W. Rhyolites and their source mushes across tectonic settings. J. Petrol. 49, 2277–2285 (2008).
Claiborne, L. L., Miller, C. F., Flanagan, D. M., Clynne, M. A. & Wooden, J. L. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens. Geology 38, 1011–1014 (2010).
Costa, F. Residence times of silicic magmas associated with calderas. Dev. Volcanol. 10, 1–55 (2008).
Eddy, M. P., Bowring, S. A., Miller, R. B. & Tepper, J. H. Rapid assembly and crystallization of a fossil large-volume silicic magma chamber. Geology 44, 331–334 (2016).
Schoene, B. et al. Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy. Earth Planet. Sci. Lett. 355, 162–173 (2012).
Memeti, V., Paterson, S., Matzel, J., Mundil, R. & Okaya, D. Magmatic lobes as “snapshots” of magma chamber growth and evolution in large, composite batholiths: an example from the Tuolumne intrusion, Sierra Nevada, California. Geol. Soc. Am. Bull. 122, 1912–1931 (2010).
Barboni, M. & Schoene, B. Short eruption window revealed by absolute crystal growth rates in a granitic magma. Nat. Geosci. 7, 524–528 (2014).
Pamukcu, A. S., Gualda, G. A., Bégué, F. & Gravley, D. M. Melt inclusion shapes: timekeepers of short-lived giant magma bodies. Geology 43, 947–950 (2015).
Reid, M. R., Coath, C. D., Harrison, T. M. & McKeegan, K. D. Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera: 230Th—238U ion microprobe dating of young zircons. Earth Planet. Sci. Lett. 150, 27–39 (1997).
Druitt, T., Costa, F., Deloule, E., Dungan, M. & Scaillet, B. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482, 77–80 (2012).
Parks, M. M. et al. Evolution of Santorini Volcano dominated by episodic and rapid fluxes of melt from depth. Nat. Geosci. 5, 749–754 (2012).
Kaiser, J. F., de Silva, S., Schmitt, A. K., Economos, R. & Sunagua, M. Million-year melt-presence in monotonous intermediate magma for a volcanic–plutonic assemblage in the Central Andes: contrasting histories of crystal-rich and crystal-poor super-sized silicic magmas. Earth Planet. Sci. Lett. 457, 73–86 (2017).
Keller, C. B., Schoene, B., Barboni, M., Samperton, K. M. & Husson, J. M. Volcanic-plutonic parity and the differentiation of the continental crust. Nature 523, 301–307 (2015).
Deering, C. D. et al. Zircon record of the plutonic-volcanic connection and protracted rhyolite melt evolution. Geology G37539. 37531 (2016).
Hildreth, W. Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. J. Volcanol. Geotherm. Res. 136, 169–198 (2004).
Gelman, S. E., Deering, C. D., Bachmann, O., Huber, C. & Gutiérrez, F. J. Identifying the crystal graveyards remaining after large silicic eruptions. Earth Planet. Sci. Lett. 403, 299–306 (2014).
Lee, C. T. A. & Bachmann, O. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth Planet. Sci. Lett. 393, 266–274 (2014).
Menand, T., Annen, C. & de Saint Blanquat, M. Rates of magma transfer in the crust: insights into magma reservoir recharge and pluton growth. Geology 43, 199–202 (2015).
Wotzlaw, J.-F., Bindeman, I. N., Stern, R. A., D’Abzac, F.-X. & Schaltegger, U. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions. Sci. Rep. 5, 14026 (2015).
Annen, C. From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet. Sci. Lett. 284, 409–416 (2009).
Glazner, A. F., Bartley, J. M., Coleman, D. S., Gray, W. & Taylor, R. Z. Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14, 4–12 (2004).
White, S. M., Crisp, J. A. & Spera, F. J. Long-term volumetric eruption rates and magma budgets. Geochem. Geophys. Geosyst. 7, Q03010 (2006).
Paterson, S. R., Okaya, D., Memeti, V., Economos, R. & Miller, R. B. Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs: combined field, geochronologic, and thermal modeling studies. Geosphere 7, 1439–1468 (2011).
Lipman, P. W. & Bachmann, O. Ignimbrites to batholiths: integrating perspectives from geological, geophysical, and geochronological data. Geosphere 11, 705–743 (2015).
Dimalanta, C., Taira, A., Yumul, G. P., Tokuyama, H. & Mochizuki, K. New rates of western Pacific island arc magmatism from seismic and gravity data. Earth Planet. Sci. Lett. 202, 105–115 (2002).
Gelman, S. E., Gutiérrez, F. J. & Bachmann, O. On the longevity of large upper crustal silicic magma reservoirs. Geology 41, 759–762 (2013).
Caricchi, L., Simpson, G. & Schaltegger, U. Zircons reveal magma fluxes in the Earth’s crust. Nature 511, 457–461 (2014).
Jellinek, A. M. & DePaolo, D. J. A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull. Volcanol. 65, 363–381 (2003).
Huang, H.-H. et al. The Yellowstone magmatic system from the mantle plume to the upper crust. Science 348, 773–776 (2015).
Hildreth, W. & Moorbath, S. Crustal contributions to arc magmatism in the Andes of central Chile. Contrib. Mineral. Petrol. 98, 455–489 (1988).
Kiser, E. et al. Magma reservoirs from the upper crust to the Moho inferred from high-resolution Vp and Vs models beneath Mount St. Helens, Washington State, USA. Geology 44, 411–414 (2016).
Walker, B. A., Bergantz, G. W., Otamendi, J. E., Ducea, M. N. & Cristofolini, E. A. A MASH zone revealed: the mafic complex of the Sierra Valle Fértil. J. Petrol. 56, 1863–1896 (2015).
Jagoutz, O. & Schmidt, M. W. The composition of the foundered complement to the continental crust and a re-evaluation of fluxes in arcs. Earth Planet. Sci. Lett. 371, 177–190 (2013).
Coint, N., Barnes, C., Yoshinobu, A., Chamberlain, K. & Barnes, M. Batch-wise assembly and zoning of a tilted calc-alkaline batholith: field relations, timing, and compositional variation. Geosphere 9, 1729–1746 (2013).
Grunder, A. L., Klemetti, E. W., Feeley, T. C. & McKee, C. M. Eleven million years of arc volcanism at the Aucanquilcha Volcanic Cluster, northern Chilean Andes: implications for the life span and emplacement of plutons. Trans. R. Soc. Edinburgh: Earth Sciences 97, 415–436 (2006).
de Silva, S. L. & Gosnold, W. D. Episodic construction of batholiths: insights from the spatiotemporal development of an ignimbrite flare-up. J. Volcanol. Geotherm. Res. 167, 320–335 (2007).
Dufek, J. & Bergantz, G. W. Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt–crust interaction. J. Petrol. 46, 2167–2195 (2005).
Ducea, M. N., Bergantz, G. W., Crowley, J. L. & Otamendi, J. Ultrafast magmatic buildup and diversification to produce continental crust during subduction. Geology 45, 235–238 (2017).
Quick, J. et al. Magmatic plumbing of a large Permian caldera exposed to a depth of 25 km. Geology 37, 603–606 (2009).
Frazer, R. E., Coleman, D. S. & Mills, R. D. Zircon U-Pb geochronology of the Mount Givens Granodiorite: implications for the genesis of large volumes of eruptible magma. J. Geophys. Res. 119, 2907–2924 (2014).
Barboni, M. et al. Warm storage for arc magmas. Proc. Natl Acad. Sci. USA 113, 13959–13964 (2016).
de Saint Blanquat, M. et al. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics 500, 20–33 (2011).
Degruyter, W., Huber, C., Bachmann, O., Cooper, K. M. & Kent, A. J. Magma reservoir response to transient recharge events: the case of Santorini volcano (Greece). Geology 44, 23–26 (2016).
Annen, C., Blundy, J. D., Leuthold, J. & Sparks, R. S. J. Construction and evolution of igneous bodies: towards an integrated perspective of crustal magmatism. Lithos 230, 206–221 (2015).
Lipman, P. W., Doe, B. R., Hedge, C. E. & Steven, T. A. Petrologic evolution of San-Juan volcanic field, southwestern Colorado: Pb and Sr isotope evidence. Geol. Soc. Am. Bull. 89, 59–82 (1978).
Melekhova, E., Blundy, J., Robertson, R. & Humphreys, M. C. S. Experimental evidence for polybaric differentiation of primitive arc basalt beneath St. Vincent, Lesser Antilles. J. Petrol. 56, 161–192 (2015).
Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).
Karakas, O. & Dufek, J. Melt evolution and residence in extending crust: thermal modeling of the crust and crustal magmas. Earth Planet. Sci. Lett. 425, 131–144 (2015).
Patankar, S. Numerical Heat Transfer and Fluid Flow (Chemical Rubber Company, 1980).
Pollack, H. N., Hurter, S. J. & Johnson, J. R. Heat flow from the Earth’s interior: analysis of the global data set. Rev. Geophys. 31, 267–280 (1993).
Pollack, H. N. & Chapman, D. S. On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38, 279–296 (1977).
Davies, J. H. Global map of solid Earth surface heat flow. Geochem. Geophys. Geosyst. 14, 4608–4622 (2013).
Price, R. C. et al. Crustal and mantle influences and U-Th-Ra disequilibrium in andesitic lavas of Ngauruhoe volcano, New Zealand. Chem. Geol. 277, 355–373 (2010).
Bailey, J. C., Jensen, E. S., Hansen, A., Kann, A. D. J. & Kann, K. Formation of heterogeneous magmatic series beneath North Santorini, South Aegean island arc. Lithos 110, 20–36 (2009).
Brady, R. J., Ducea, M. N., Kidder, S. B. & Saleeby, J. B. The distribution of radiogenic heat production as a function of depth in the Sierra Nevada Batholith, California. Lithos 86, 229–244 (2006).
Kumar, P. S. & Reddy, G. K. Radioelements and heat production of an exposed Archaean crustal cross-section, Dharwar craton, South India. Earth Planet. Sci. Lett. 224, 309–324 (2004).
Christensen, N. I. & Mooney, W. D. Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res. 100, 9761–9788 (1995).
L’Ecuyer, P. Efficient and portable combined random number generators. Commun. ACM 31, 742–751 (1988).
Williams, M., Hanmer, S., Kopf, C. & Darrach, M. Syntectonic generation and segregation of tonalitic melts from amphibolite dikes in the lower crust, Striding-Athabasca mylonite zone, northern Saskatchewan. J. Geophys. Res. 100, 15717–15734 (1995).
Sisson, T., Ratajeski, K., Hankins, W. & Glazner, A. Voluminous granitic magmas from common basaltic sources. Contrib. Mineral. Petrol. 148, 635–661 (2005).
Piwinskii, A. & Wyllie, P. Experimental studies of igneous rock series: a zoned pluton in the Wallowa batholith, Oregon. J. Geol. 76, 205–234 (1968).
Nandedkar, R. H., Ulmer, P. & Müntener, O. Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib. Mineral. Petrol. 167, 1–27 (2014).
Voller, V. & Swaminathan, C. General source-based method for solidification phase change. Numer. Heat Transfer 19B, 175–189 (1991).
Degruyter, W. & Huber, C. A model for eruption frequency of upper crustal silicic magma chambers. Earth Planet. Sci. Lett. 403, 117–130 (2014).
de Silva, S. L. & Gregg, P. M. Thermomechanical feedbacks in magmatic systems: implications for growth, longevity, and evolution of large caldera-forming magma reservoirs and their supereruptions. J. Volcanol. Geotherm. Res. 282, 77–91 (2014).
Carrigan, C. R. Biot number and thermos bottle effect: implications for magma-chamber convection. Geology 16, 771–774 (1988).
Paterson, S. R. & Ducea, M. N. Arc magmatic tempos: gathering the evidence. Elements 11, 91–98 (2015).
Whittington, A. G., Hofmeister, A. M. & Nabelek, P. I. Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature 458, 319–321 (2009).
Acknowledgements
We thank C. Huber and G. Bergantz for their help over the years. O.K. and O.B. acknowledge the support from Swiss SNF project 200020_165501. O.K. and J.D. acknowledge the support from NSF grant EAR 1321843.
Author information
Authors and Affiliations
Contributions
The conceptual model was developed by O.K., W.D. and O.B. The original numerical model was developed by J.D. and adapted and executed by O.K. for this study. All authors contributed to the writing of the manuscript, with O.K. taking the lead.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 338 kb)
Rights and permissions
About this article
Cite this article
Karakas, O., Degruyter, W., Bachmann, O. et al. Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism. Nature Geosci 10, 446–450 (2017). https://doi.org/10.1038/ngeo2959
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo2959
This article is cited by
-
Intrusions induce global warming before continental flood basalt volcanism
Nature Geoscience (2022)
-
Supergiant porphyry copper deposits are failed large eruptions
Communications Earth & Environment (2022)
-
Machine learning thermobarometry and chemometry using amphibole and clinopyroxene: a window into the roots of an arc volcano (Mount Liamuiga, Saint Kitts)
Contributions to Mineralogy and Petrology (2022)
-
No single model for supersized eruptions and their magma bodies
Nature Reviews Earth & Environment (2021)
-
Evidence for temporal relationship between the late Mesozoic multistage Qianlishan granite complex and the Shizhuyuan W–Sn–Mo–Bi deposit, SE China
Scientific Reports (2021)