Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fluid escape from subduction zones controlled by channel-forming reactive porosity

Abstract

Water within the oceanic lithosphere is returned to Earth’s surface at subduction zones. Observations of metamorphosed veins preserved in exhumed slabs suggest that fluid can escape via channel networks. Yet, it is unclear how such channels form that allow chemically bound water to escape the subducting slab as the high pressures during subduction reduce the porosity of rocks to nearly zero. Here we use multiscale rock analysis combined with thermodynamic modelling to show that fluid flow initiation in dehydrating serpentinites is controlled by intrinsic chemical heterogeneities, localizing dehydration reactions at specific microsites. Porosity generation is directly linked to the dehydration reactions and resultant fluid pressure variations force the reactive fluid release to organize into vein networks across a wide range of spatial scales (μm to m). This fluid channelization results in large-scale fluid escape with sufficient fluxes to drain subducting plates. Moreover, our findings suggest that antigorite dehydration reactions do not cause instantaneous rock embrittlement, often presumed as the trigger of intermediate-depth subduction zone seismicity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Equilibrium phase diagram depicting the metamorphic evolution of a typical serpentinite.
Figure 2: Outcrop and microphotographs of eclogite-facies olivine vein networks as a result of serpentinite dehydration in the Erro-Tobbio area, Italy.
Figure 3: Microstructures of fluid source regions ahead of first-order dehydration veins.
Figure 4: Illustration of the reactive porosity model.
Figure 5: Evolution of the reactive porosity model versus a naturally occurring dehydration vein network.

References

  1. 1

    Peacock, S. M. Fluid processes in subduction zones. Science 248, 329–337 (1990).

    Article  Google Scholar 

  2. 2

    Walowski, K. J., Wallace, P. J., Hauri, E. H., Wada, I. & Clynne, M. A. Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite. Nat. Geosci. 8, 404–408 (2015).

    Article  Google Scholar 

  3. 3

    John, T. et al. Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nat. Geosci. 5, 489–492 (2012).

    Article  Google Scholar 

  4. 4

    Katayama, I., Terada, T., Okazaki, K. & Tanikawa, A. Episodic tremor and slow slip potentially linked to permeability contrasts at the Moho. Nat. Geosci. 5, 731–734 (2012).

    Article  Google Scholar 

  5. 5

    Hacker, B. R., Peacock, S. M., Abers, G. A. & Holloway, S. D. Subduction factory-2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res. 108, B1, 2030 (2003).

    Google Scholar 

  6. 6

    Spence, W. Slab pull and the seismotectonics of subducting lithosphere. Rev. Geophys. 25, 55–69 (1987).

    Article  Google Scholar 

  7. 7

    van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. 116, B01401 (2011).

    Article  Google Scholar 

  8. 8

    Garrison, T. S. Oceanography, An Invitation to Marine Science Vol. 2 (Thomson Brooks/Cole, 2010).

    Google Scholar 

  9. 9

    Manga, M. et al. Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms. Rev. Geophys. 50, RG2004 (2012).

    Article  Google Scholar 

  10. 10

    Ingebritsen, S. E. & Manning, C. E. Permeability of the continental crust: dynamic variations inferred from seismicity and metamorphism. Geofluids 10, 193–205 (2010).

    Google Scholar 

  11. 11

    Ague, J. J. & Rye, D. M. Simple models of CO2 release from metacarbonates with implications for interpretation of directions and magnitudes of fluid flow in the deep crust. J. Petrol. 40, 1443–1462 (1999).

    Article  Google Scholar 

  12. 12

    Manning, C. E. & Ingebritsen, S. E. Permeability of the continental crust: implications of geothermal data and metamorphic systems. Rev. Geophys. 37, 127–150 (1999).

    Article  Google Scholar 

  13. 13

    Miller, J. A., Cartwright, I., Buick, I. S. & Barnicoat, A. C. An O-isotope profile through the HP-LT Corsican ophiolite, France and its implications for fluid flow during subduction. Chem. Geol. 178, 43–69 (2001).

    Article  Google Scholar 

  14. 14

    Selverstone, J. & Sharp, Z. D. Chlorine isotope constraints on fluid-rock interactions during subduction and exhumation of the Zermatt-Saas ophiolite. Geochem. Geophys. Geosyst. 14, 4370–4391 (2013).

    Article  Google Scholar 

  15. 15

    Spandler, C., Pettke, T. & Rubatto, D. Internal and external fluid sources for eclogite-facies veins in the Monviso Meta-Ophiolite, Western Alps: implications for fluid flow in subduction zones. J. Petrol. 52, 1207–1236 (2011).

    Article  Google Scholar 

  16. 16

    Breeding, C. M. & Ague, J. J. Slab-derived fluids and quartz-vein formation in an accretionary prism, Otago Schist, New Zealand. Geology 30, 499–502 (2002).

    Article  Google Scholar 

  17. 17

    Herms, P., John, T., Bakker, R. J. & Schenk, V. Evidence for channelized external fluid flow and element transfer in subducting slabs (Raspas Complex, Ecuador). Chem. Geol. 310, 79–96 (2012).

    Article  Google Scholar 

  18. 18

    Rüpke, L. H., Morgan, J. P., Hort, M. & Connolly, J. A. D. Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett. 223, 17–34 (2004).

    Article  Google Scholar 

  19. 19

    Padron-Navarta, J. A. et al. Fluid transfer into the wedge controlled by high-pressure hydrofracturing in the cold top-slab mantle. Earth Planet. Sci. Lett. 297, 271–286 (2010).

    Article  Google Scholar 

  20. 20

    Scambelluri, M., Müntener, O., Hermann, J., Piccardo, G. B. & Trommsdorff, V. Subduction of water into the mantle—history of an Alpine peridotite. Geology 23, 459–462 (1995).

    Article  Google Scholar 

  21. 21

    Hoogerduijn Strating, E. H. H. & Vissers, R. L. M. Dehydration-induced fracturing of eclogite-facies peridotites—implications for the mechanical-behavior of subducting oceanic lithosphere. Tectonophysics 200, 187–198 (1991).

    Article  Google Scholar 

  22. 22

    Scambelluri, M., Strating, E. H. H., Piccardo, G. B., Vissers, R. L. M. & Rampone, E. Alpine olivine-bearing and titanian clinohumite-bearing assemblages in the Erro Tobbio peridotite (Voltri-Massif, NW Italy). J. Metamorph. Geol. 9, 79–91 (1991).

    Article  Google Scholar 

  23. 23

    Messiga, B., Scambelluri, M. & Piccardo, G. B. Chloritoid-bearing assemblages in mafic systems and eclogite-facies hydration of Alpine Mg-Al metagabbros (Erro-Tobbio Unit, Ligurian Western Alps). Eur. J. Mineral. 7, 1149–1167 (1995).

    Article  Google Scholar 

  24. 24

    Chollet, M., Daniel, I., Koga, K. T., Morard, G. & van de Moortele, B. Kinetics and mechanism of antigorite dehydration: implications for subduction zone seismicity. J. Geophys. Res. 116, B04203 (2011).

    Article  Google Scholar 

  25. 25

    Perrillat, J. P. et al. Kinetics of antigorite dehydration: a real-time X-ray diffraction study. Earth Planet. Sci. Lett. 236, 899–913 (2005).

    Article  Google Scholar 

  26. 26

    Eggler, D. H. & Ehmann, A. N. Rate of antigorite dehydration at 2 GPa applied to subduction zones. Am. Mineral. 95, 761–769 (2010).

    Article  Google Scholar 

  27. 27

    Arkwright, J. C., Rutter, E. H., Brodie, K. H. & Llana-Funez, S. Role of porosity and dehydration reaction on the deformation of hot-pressed serpentinite aggregates. J. Geol. Soc. Lond. 165, 639–649 (2008).

    Article  Google Scholar 

  28. 28

    Rutter, E. H., Llana-Funez, S. & Brodie, K. H. Dehydration and deformation of intact cylinders of serpentinite. J. Struct. Geol. 31, 29–43 (2009).

    Article  Google Scholar 

  29. 29

    Fusseis, F. et al. Pore formation during dehydration of a polycrystalline gypsum sample observed and quantified in a time-series synchrotron X-ray micro-tomography experiment. Solid Earth 3, 71–86 (2012).

    Article  Google Scholar 

  30. 30

    Tenthorey, E. & Cox, S. F. Reaction-enhanced permeability during serpentinite dehydration. Geology 31, 921–924 (2003).

    Article  Google Scholar 

  31. 31

    Bach, W. et al. Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15° N (ODP Leg 209, Site 1274). Geophys. Res. Lett. 33, L13306 (2006).

    Article  Google Scholar 

  32. 32

    Plümper, O., Røyne, A., Magrasó, A. & Jamtveit, B. The interface-scale mechanism of reaction-induced fracturing during serpentinization. Geology 40, 1103–1106 (2012).

    Article  Google Scholar 

  33. 33

    Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

    Article  Google Scholar 

  34. 34

    Emmanuel, S. & Ague, J. J. Impact of nano-size weathering products on the dissolution rates of primary minerals. Chem. Geol. 282, 11–18 (2011).

    Article  Google Scholar 

  35. 35

    Auzende, A.-L. et al. Deformation mechanisms of antigorite serpentinite at subduction zone conditions determined from experimentally and naturally deformed rocks. Earth Planet. Sci. Lett. 411, 229–240 (2015).

    Article  Google Scholar 

  36. 36

    Kawano, S., Katayama, I. & Okazaki, K. Permeability anisotropy of serpentinite and fluid pathways in a subduction zone. Geology 39, 939–942 (2011).

    Article  Google Scholar 

  37. 37

    Connolly, J. A. D. & Podladchikov, Y. Y. Compaction-driven fluid flow in viscoelastic rock. Geodin. Acta 11, 55–84 (1998).

    Article  Google Scholar 

  38. 38

    Connolly, J. A. D. Devolatilization-generated fluid pressure and deformation-propagated fluid flow during prograde regional metamorphism. J. Geophys. Res. 102, 18149–18173 (1997).

    Article  Google Scholar 

  39. 39

    Bons, P. D. The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics 336, 1–17 (2001).

    Article  Google Scholar 

  40. 40

    Morgan, J. P. & Holtzman, B. K. Vug waves: a mechanism for coupled rock deformation and fluid migration. Geochem. Geophys. Geosyst. 6, 8 (2005).

    Google Scholar 

  41. 41

    Dragovic, B., Baxter, E. F. & Caddick, M. J. Pulsed dehydration and garnet growth during subduction revealed by zoned garnet geochronology and thermodynamic modeling, Sifnos, Greece. Earth Planet. Sci. Lett. 413, 111–122 (2015).

    Article  Google Scholar 

  42. 42

    Angiboust, S., Pettke, T., de Hoog, J. C. M., Caron, B. & Oncken, O. Channelized fluid flow and eclogite-facies metasomatism along the subduction shear zone. J. Petrol. 55, 883–916 (2014).

    Article  Google Scholar 

  43. 43

    Vrijmoed, J. C. et al. Metasomatism in the ultrahigh-pressure Svartberget garnet-peridotite (Western Gneiss Region, Norway): implications for the transport of crust-derived fluids within the mantle. J. Petrol. 54, 1815–1848 (2013).

    Article  Google Scholar 

  44. 44

    Jung, H. & Green, H. W. Experimental faulting of serpentinite during dehydration: implications for earthquakes, seismic low-velcoity zones, and anomalous hypocenter distributions in subduction zones. Int. Geol. Rev. 46, 1089–1102 (2004).

    Article  Google Scholar 

  45. 45

    Jung, H., Green, H. W. & Dobrzhinetskaya, L. F. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature 428, 545–549 (2004).

    Article  Google Scholar 

  46. 46

    John, T. et al. Generation of intermediate-depth earthquakes by self-localizing thermal runaway. Nat. Geosci. 2, 137–140 (2009).

    Article  Google Scholar 

  47. 47

    Kelemen, P. B. & Hirth, G. A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle. Nature 446, 787–790 (2007).

    Article  Google Scholar 

  48. 48

    Chernak, L. J. & Hirth, G. Syndeformational antigorite dehydration produces stable fault slip. Geology 39, 847–850 (2011).

    Article  Google Scholar 

  49. 49

    Proctor, B. & Hirth, G. Role of pore fluid pressure on transient strength changes and fabric development during serpentine dehydration at mantle conditions: implications for subduction-zone seismicity. Earth Planet. Sci. Lett. 421, 1–12 (2015).

    Article  Google Scholar 

  50. 50

    Prieto, G. A. et al. Seismic evidence for thermal runaway during intermediate-depth earthquake rupture. Geophys. Res. Lett. 40, 6064–6068 (2013).

    Article  Google Scholar 

  51. 51

    Parai, R. & Mukhopadhyay, S. How large is the subducted water flux? New constraints on mantle regassing rates. Earth Planet. Sci. Lett. 317, 396–406 (2012).

    Article  Google Scholar 

  52. 52

    Holland, T. & Powell, R. A Compensated-Redlich-Kwong (CORK) equation for volumes and fugacities of CO2 and H2O in the range 1 bar to 50 kbar and 100–1600 °C. Contrib. Mineral. Petrol. 109, 265–273 (1991).

    Article  Google Scholar 

  53. 53

    Padron-Navarta, J. A. et al. Tschermak’s substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites. Lithos 178, 186–196 (2013).

    Article  Google Scholar 

  54. 54

    Viti, C. & Mellini, M. Mesh textures and bastites in the Elba retrograde serpentinites. Eur. J. Mineral. 10, 1341–1359 (1998).

    Article  Google Scholar 

  55. 55

    Dodony, I. & Buseck, P. R. Serpentines close-up and intimate: an HRTEM view. Int. Geol. Rev. 46, 507–527 (2004).

    Article  Google Scholar 

  56. 56

    Dohmen, R. & Milke, R. in Reviews in Mineralogy Geochemistry (eds Zhang, Y. & Cherniak, D. J.) 921–970 (2010).

    Google Scholar 

Download references

Acknowledgements

The paper greatly benefited from discussions with H. E. King, H. Austrheim, B. Jamtveit, L. Rüpke, P. Meakin, C. Spiers, M. Drury and A. Latini. T.J. and M.S. acknowledge discussion within the EU Early Stage Training Network ZIP (Zooming In between Plates, FP7-PEOPLE-2013, 604713) and thank the European Commission for funding. O.P., T.J., Y.Y.P. and J.C.V. acknowledge their interdisciplinary discussions as members of PGP without which this project would never have been realized. We thank W. Bach for the IODP samples and J. Ague. We also thank A. Schreiber (GFZ Potsdam) for preparing FIB cuts. O.P. was supported through a Veni grant (863.13.006), awarded by the Netherlands Organisation for Scientific Research (NWO). J.C.V. was supported by the European Research Council (ERC) starting grant MADE-IN-EARTH (335577). Y.Y.P. acknowledges support from CADMOS (Center for Advanced Modelling Science).

Author information

Affiliations

Authors

Contributions

All authors participated in collecting the data and interpretation of the results; O.P. and T.J. collected and interpreted the microstructural and chemical data: O.P., T.J., J.C.V. and Y.Y.P. developed the final model together; T.J. and M.S. did the field work and first petrological sample recognitions.

Corresponding authors

Correspondence to Oliver Plümper or Timm John.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 8022 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Plümper, O., John, T., Podladchikov, Y. et al. Fluid escape from subduction zones controlled by channel-forming reactive porosity. Nature Geosci 10, 150–156 (2017). https://doi.org/10.1038/ngeo2865

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing