Substantial global carbon uptake by cement carbonation

Abstract

Calcination of carbonate rocks during the manufacture of cement produced 5% of global CO2 emissions from all industrial process and fossil-fuel combustion in 20131,2. Considerable attention has been paid to quantifying these industrial process emissions from cement production2,3, but the natural reversal of the process—carbonation—has received little attention in carbon cycle studies. Here, we use new and existing data on cement materials during cement service life, demolition, and secondary use of concrete waste to estimate regional and global CO2 uptake between 1930 and 2013 using an analytical model describing carbonation chemistry. We find that carbonation of cement materials over their life cycle represents a large and growing net sink of CO2, increasing from 0.10 GtC yr−1 in 1998 to 0.25 GtC yr−1 in 2013. In total, we estimate that a cumulative amount of 4.5 GtC has been sequestered in carbonating cement materials from 1930 to 2013, offsetting 43% of the CO2 emissions from production of cement over the same period, not including emissions associated with fossil use during cement production. We conclude that carbonation of cement products represents a substantial carbon sink that is not currently considered in emissions inventories1,3,4.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Annual carbon sequestration by cement 1930–2013.
Figure 2: Net cement emissions and annual sequestration rate 1930–2013.
Figure 3: Allocations of global historical cement process emissions 1930–2013.

References

  1. 1

    Cement Statistics and Information (USGS, 2015); http://minerals.usgs.gov/minerals/pubs/commodity/cement/index.html

  2. 2

    Boden, T. A., Marland, G. & Andres, R. J. Global, Regional, and National Fossil-Fuel CO2 Emissions (Carbon Dioxide Information Analysis Center, 2014).

    Google Scholar 

  3. 3

    CO 2 Emissions From Fuel Combustion (International Energy Agency, 2014).

  4. 4

    Barcelo, L., Kline, J., Walenta, G. & Gartner, E. Cement and carbon emissions. Mater. Struct. 47, 1055–1065 (2014).

    Article  Google Scholar 

  5. 5

    Pade, C. & Guimaraes, M. The CO2 uptake of concrete in a 100 year perspective. Cement Concr. Res. 37, 1348–1356 (2007).

    Article  Google Scholar 

  6. 6

    Huntzinger, D. N., Gierke, J. S., Kawatra, S. K., Eisele, T. C. & Sutter, L. L. Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environ. Sci. Technol. 43, 1986–1992 (2009).

    Article  Google Scholar 

  7. 7

    Renforth, P., Washbourne, C. L., Taylder, J. & Manning, D. Silicate production and availability for mineral carbonation. Environ. Sci. Technol. 45, 2035–2041 (2011).

    Article  Google Scholar 

  8. 8

    Johannesson, B. & Utgenannt, P. Microstructural changes caused by carbonation of cement mortar. Cement Concr. Res. 31, 925–931 (2001).

    Article  Google Scholar 

  9. 9

    Papadakis, V. G., Vayenas, C. G. & Fardis, M. N. Experimental investigation and mathematical modeling of the concrete carbonation problem. Chem. Eng. Sci. 46, 1333–1338 (1991).

    Article  Google Scholar 

  10. 10

    Gajda, J. Absorption of Atmospheric Carbon Dioxide by Portland Cement Concrete (Portland Cement Association, 2001).

    Google Scholar 

  11. 11

    Andersson, R., Fridh, K., Stripple, H. & Häglund, M. Calculating CO2 uptake for existing concrete structures during and after service life. Environ. Sci. Technol. 47, 11625–11633 (2013).

    Article  Google Scholar 

  12. 12

    Dodoo, A., Gustavsson, L. & Sathre, R. Carbon implications of end-of-life management of building materials. Resour. Conserv. Recy. 53, 276–286 (2009).

    Article  Google Scholar 

  13. 13

    Engelsen, C. J., Mehus, J., Pade, C. & Sæther, D. H. Carbon Dioxide Uptake in Demolished and Crushed Concrete (Norwegian Building Research Institute, 2005).

  14. 14

    Yoon, I.-S., Çopuroğlu, O. & Park, K.-B. Effect of global climatic change on carbonation progress of concrete. Atmos. Environ. 41, 7274–7285 (2007).

    Article  Google Scholar 

  15. 15

    Monteiro, I., Branco, F., Brito, J. d. & Neves, R. Statistical analysis of the carbonation coefficient in open air concrete structures. Const. Build. Mater. 29, 263–269 (2012).

    Article  Google Scholar 

  16. 16

    Hu, M., Bergsdal, H., van der Voet, E., Huppes, G. & Müller, D. B. Dynamics of urban and rural housing stocks in China. Build. Res. Inf. 38, 301–317 (2010).

    Article  Google Scholar 

  17. 17

    Kapur, A., Keoleian, G., Kendall, A. & Kesler, S. E. Dynamic modeling of In - Use cement stocks in the United States. J. Ind. Ecol. 12, 539–556 (2008).

    Article  Google Scholar 

  18. 18

    Yang, K.-H., Seo, E.-A. & Tae, S.-H. Carbonation and CO2 uptake of concrete. Environ. Impact Assess. 46, 43–52 (2014).

    Article  Google Scholar 

  19. 19

    Galan, I., Andrade, C., Mora, P. & Sanjuan, M. A. Sequestration of CO2 by concrete carbonation. Environ. Sci. Technol. 44, 3181–3186 (2010).

    Article  Google Scholar 

  20. 20

    Silva, A., Neves, R. & de Brito, J. Statistical modelling of carbonation in reinforced concrete. Cement Concr. Compos. 50, 73–81 (2014).

    Article  Google Scholar 

  21. 21

    Pommer, K., Pade, C., Institut, D. T. & Centre, N. I. Guidelines: Uptake of Carbon Dioxide in the Life Cycle Inventory of Concrete (Nordic Innovation Centre, 2006).

    Google Scholar 

  22. 22

    Kelly, T. D. Crushed Cement Concrete Substitution for Construction Aggregates, a Materials Flow Analysis (US Department of the Interior, US Geological Survey, 1998).

  23. 23

    Lutz, H. & Bayer, R. Ullmann’s Encyclopedia of Industrial Chemistry Vol. 11 (Wiley, 2010).

    Google Scholar 

  24. 24

    Bossink, B. & Brouwers, H. Construction waste: quantification and source evaluation. J. Constr. Eng. Manage. 122, 55–60 (1996).

    Article  Google Scholar 

  25. 25

    Khanna, O. S. Characterization and Utilization of Cement Kiln Dusts (CKDs) as Partial Replacements of Portland Cement (Univ. Toronto, 2009).

  26. 26

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article  Google Scholar 

  27. 27

    Piao, S. et al. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009–1013 (2009).

    Article  Google Scholar 

  28. 28

    Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbon-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

    Article  Google Scholar 

  29. 29

    Rau, G. H., Knauss, K. G., Langer, W. H. & Caldeira, K. Reducing energy-related CO2 emissions using accelerated weathering of limestone. Energy 32, 1471–1477 (2007).

    Article  Google Scholar 

  30. 30

    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).

    Article  Google Scholar 

  31. 31

    Bobicki, E. R., Liu, Q., Xu, Z. & Zeng, H. Carbon capture and storage using alkaline industrial wastes. Prog. Energy Combust. Sci. 38, 302–320 (2012).

    Article  Google Scholar 

  32. 32

    Papadakis, V. G., Vayenas, C. G. & Fardis, M. A reaction engineering approach to the problem of concrete carbonation. AIChE J. 35, 1639–1650 (1989).

    Article  Google Scholar 

  33. 33

    Huang, N., Chang, J. & Liang, M. Effect of plastering on the carbonation of a 35-year-old reinforced concrete building. Const. Build. Mater. 29, 206–214 (2012).

    Article  Google Scholar 

  34. 34

    Jonsson, G. & Wallevik, O. Information on the use of concrete in Denmark, Sweden, Norway and Iceland. Icelandic Build. Res. Inst. (2005).

  35. 35

    Kelly, T. D. & Matos, G. R. Historical Statistics for Mineral and Material Commodities in the United States (United States Geological Survey Data, 2014)http://minerals.usgs.gov/minerals/pubs/historical-statistics/nickel-use.pdf

    Google Scholar 

  36. 36

    Lagerblad, B. Carbon Dioxide Uptake During Concrete Life Cycle: State of the Art (Swedish Cement and Concrete Research Institute, 2005).

    Google Scholar 

  37. 37

    Low, M.-S. Material Flow Analysis of Concrete in the United States (Massachusetts Institute of Technology, 2005).

    Google Scholar 

  38. 38

    Nisbet, M. A. Environmental Life Cycle Inventory of Portland Cement Concrete (Portland Cement Association Skokie, 2000).

    Google Scholar 

  39. 39

    Ready-Mixed Concrete Industry Statistics 2001–2013 (European Ready Mixed Concrete Organization, 2014); http://www.ermco.eu

  40. 40

    Zhou, H. Construction and Installation Engineering Budget Manual (China Machine Press, 2003).

    Google Scholar 

  41. 41

    Huang, Z. & Zhao, J. Concrete Mix Proportion Quick Manual (China Building Industry, 2001).

    Google Scholar 

  42. 42

    Pommer, K. & Pade, C. Guidelines: Uptake of Carbon Dioxide in the Life Cycle Inventory of Concrete (Nordic Innovation Centre, 2006).

    Google Scholar 

  43. 43

    Concrete-Part 1. Specification, Performance, Production and Conformity EN 206-1-2000 (European Committee for Standardization, 2001).

  44. 44

    Talukdar, S., Banthia, N., Grace, J. & Cohen, S. Carbonation in concrete infrastructure in the context of global climate change: part 2–Canadian urban simulations. Cement Concr. Compos. 34, 931–935 (2012).

    Article  Google Scholar 

  45. 45

    Roy, S., Northwood, D. & Poh, K. Effect of plastering on the carbonation of a 19-year-old reinforced concrete building. Constr. Build. Mater. 10, 267–272 (1996).

    Article  Google Scholar 

  46. 46

    Klopfer, H. The carbonation of external concrete and how to combat it. Bautenschutz Bausanieruniz 3, 86–97 (1978).

    Google Scholar 

  47. 47

    Browner, R. Design prediction of the life for reinforced concrete in marine and other chloride environments. Durability Build. Mater. 1, 113–125 (1982).

    Google Scholar 

  48. 48

    Zhang, L. Carbonization delay coefficients research of concrete surface coverages [in Chinese]. J. Xi’an Inst. Metall. Const. Eng. 21, 34–40 (1989).

    Google Scholar 

  49. 49

    Seneviratne, A. M. G., Sergi, G. & Page, C. L. Performance characteristics of surface coatings applied to concrete for control of reinforcement corrosion. Constr. Build. Mater. 14, 55–59 (2000).

    Article  Google Scholar 

  50. 50

    Zafeiropoulou, T., Rakanta, E. & Batis, G. Performance evaluation of organic coatings against corrosion in reinforced cement mortars. Prog. Org. Coat. 72, 175–180 (2011).

    Article  Google Scholar 

  51. 51

    Lo, T. Y., Liao, W., Wong, C. K. & Tang, W. Evaluation of carbonation resistance of paint coated concrete for buildings. Constr. Build. Mater. 107, 299–306 (2016).

    Article  Google Scholar 

  52. 52

    Moon, H. Y., Shin, D. G. & Choi, D. S. Evaluation of the durability of mortar and concrete applied with inorganic coating material and surface treatment system. Constr. Build. Mater. 21, 362–369 (2007).

    Article  Google Scholar 

  53. 53

    Papadakis, V. G. Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cement Concr. Res. 30, 291–299 (2000).

    Article  Google Scholar 

  54. 54

    Huang, T., Shi, F., Tanikawa, H., Fei, J. & Han, J. Materials demand and environmental impact of buildings construction and demolition in China based on dynamic material flow analysis. Resour. Conserv. Recy. 72, 91–101 (2013).

    Article  Google Scholar 

  55. 55

    Eggleston, S., Buendia, L. & Miwa, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Volume 3 Industrial Processes and Product Use (Institute for Global Environmental Strategies, 2006).

    Google Scholar 

  56. 56

    Takano, H. & Matsunaga, T. CO2 fixation by artificial weathering of waste concrete and coccolithophorid algae cultures. Energy Convers. Manage. 36, 697–700 (1995).

    Article  Google Scholar 

  57. 57

    Chang, C.-F. & Chen, J.-W. The experimental investigation of concrete carbonation depth. Cement Concr. Res. 36, 1760–1767 (2006).

    Article  Google Scholar 

  58. 58

    Lu, W. Waste Recycling System Material Metabolism Analysis Model and Its Application PhD thesis, Univ. Tsinghua (2010).

  59. 59

    Kikuchi, T. & Kuroda, Y. Carbon dioxide uptake in demolished and crushed concrete. J. Adv. Concr. Technol. 9, 115–124 (2011).

    Article  Google Scholar 

  60. 60

    Technical Specification for Application of Recycled Aggregate JGJ/T 240-2011 (The Department of Housing and Urban–Rural Development, 2011).

  61. 61

    Winter, C. & Plank, J. The European dry-mix mortar industry (Part 1). ZKG Int. 60, 62–69 (2007).

    Google Scholar 

  62. 62

    Beijing Local Standard - Technical Specifications for Application of Dry-mixed Mortar DB11/T696-2009, J11582-12010 (Housing and Urban Rural Construction Standard Quota Division, 2010).

  63. 63

    Sprung, S. & Kropp, J. Ullmann’s Encyclopedia of Industrial Chemistry Vol. 9 (Wiley, 2010).

    Google Scholar 

  64. 64

    El-Turki, A., Carter, M. A., Wilson, M. A., Ball, R. J. & Allen, G. C. A microbalance study of the effects of hydraulicity and sand grain size on carbonation of lime and cement. Const. Build. Mater. 23, 1423–1428 (2009).

    Article  Google Scholar 

  65. 65

    Jo, Y. K. Basic properties of epoxy cement mortars without hardener after outdoor exposure. Constr. Build. Mater. 22, 911–920 (2008).

    Article  Google Scholar 

  66. 66

    Lu, W. et al. An empirical investigation of construction and demolition waste generation rates in Shenzhen city, South China. Waste Manage. 31, 680–687 (2011).

    Article  Google Scholar 

  67. 67

    Khanna, O. S. Characterization and Utilization of Cement Kiln Dusts (CKDs) as Partial Replacements of Portland Cement PhD thesis, Univ. Toronto (2009).

  68. 68

    Report to Congress on Cement Kiln Dust (Office of Solid Waste and Emergency Response, 1993).

  69. 69

    Hawkins, G. J., Bhatty, J. I. & O’Hare, A. T. in Innovations in Portland Cement Manufacturing (eds Bhatty, J. I., Miller, F. M. & Kosmatka, S. H.) 735–779 (Portland Cement Association, 2004).

    Google Scholar 

  70. 70

    Sreekrishnavilasam, A., King, S. & Santagata, M. Characterization of fresh and landfilled cement kiln dust for reuse in construction applications. Eng. Geol. 85, 165–173 (2006).

    Article  Google Scholar 

  71. 71

    Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. IPCC Guidelines for National Greenhouse Gas Inventories (Institute for Global Environmental Strategies, 2006).

    Google Scholar 

Download references

Acknowledgements

Supported by the NSFC (41473076, 41501605, 51578344, 31100346, 41629501, 71533005), Fund of Youth Innovation Promotion Association, Chinese Academy of Sciences, Fund of Fellowships for Young International Distinguished Scientists in Institute of Applied Ecology, Chinese Academy of Sciences, National Key R&D Program of China (2016YFA0602604), the UK Economic and Social Research Council funded project ‘Dynamics of Green Growth in European and Chinese Cities’ (ES/L016028/1), and the UK Natural Environment Research Council funded project ‘Integrated assessment of the emission-health-socioeconomics nexus and air pollution mitigation solutions and interventions in Beijing’ (NE/N00714X/1).

Author information

Affiliations

Authors

Contributions

F.X. and Z.L. designed the paper. F.X. conceived the research. F.X., C.P., T.S., J.W., K.H.Y., L.B., I.G., C.A. and P.C. provided the data from different countries and regions. T.S., F.X., J.W. and Y.Z. provided the survey statistics and experimental measurements data. S.J.D., F.X., Z.L., P.C., M.S. and D.C.B. performed the analysis. C.P., J.L., Z.L., L.J., P.C., K.H.Y., L.B., I.G. and Y.Z. provided the reference data. F.X., L.B., D.C.B., Z.L. M.S. and T.S. performed uncertainty analysis. S.J.D. and L.B. drew the figures. All authors contributed to writing the paper.

Corresponding author

Correspondence to Zhu Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1202 kb)

Supplementary Information

Supplementary Information (XLSX 4930 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xi, F., Davis, S., Ciais, P. et al. Substantial global carbon uptake by cement carbonation. Nature Geosci 9, 880–883 (2016). https://doi.org/10.1038/ngeo2840

Download citation

Further reading