Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pacific carbon cycling constrained by organic matter size, age and composition relationships

Abstract

Marine organic matter is one of Earth’s largest actively cycling reservoirs of organic carbon and nitrogen1,2. The processes controlling organic matter production and removal are important for carbon and nitrogen biogeochemical cycles, which regulate climate. However, the many possible cycling mechanisms have hindered our ability to quantify marine organic matter transformation, degradation and turnover rates3,4. Here we analyse existing and new measurements of the carbon:nitrogen ratio and radiocarbon age of organic matter spanning sizes from large particulate organic matter to small dissolved organic molecules. We find that organic matter size is negatively correlated with radiocarbon age and carbon:nitrogen ratios in coastal, surface and deep waters of the Pacific Ocean. Our measurements suggest that organic matter is increasingly chemically degraded as it decreases in size, and that small particles and molecules persist in the ocean longer than their larger counterparts. Based on these correlations, we estimate the production rates of small, biologically recalcitrant dissolved organic matter molecules at 0.11–0.14 Gt of carbon and about 0.005 Gt of nitrogen per year in the deep ocean. Our results suggest that the preferential remineralization of large over small particles and molecules is a key process governing organic matter cycling and deep ocean carbon storage.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Least squares regressions indicate quantitative organic matter size, Δ14C value and C:N ratio relationships.

References

  1. 1

    Hansell, D. A. Relcalcitrant dissolved organic carbon fractions. Ann. Rev. Mar. Sci. 5, 421–445 (2013).

    Article  Google Scholar 

  2. 2

    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599 (2010).

    Article  Google Scholar 

  3. 3

    Carlson, C. A. in Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. A & Carlson, C. A) 91–151 (Academic, 2002).

    Google Scholar 

  4. 4

    Lee, C., Wakeham, S. & Arnosti, C. Particulate organic matter in the sea: the composition conundrum. Ambio 33, 565–575 (2004).

    Article  Google Scholar 

  5. 5

    McNichol, A. P. & Aluwihare, L. I. The power of radiocarbon in biogeochemical studies of the marine carbon cycle: insights from studies of dissolved and particulate organic carbon (DOC and POC). Chem. Rev. 107, 443–466 (2007).

    Article  Google Scholar 

  6. 6

    Williams, P. M. & Druffel, E. R. M. Radiocarbon in dissolved organic-matter in the central north pacific-ocean. Nature 330, 246–248 (1987).

    Article  Google Scholar 

  7. 7

    Beaupre, S. R. & Druffel, E. R. M. Constraining the propagation of bomb-radiocarbon through the dissolved organic carbon (DOC) pool in the northeast Pacific Ocean. Deep-Sea Res. I 56, 1717–1726 (2009).

    Article  Google Scholar 

  8. 8

    Druffel, E. R. M. & Williams, P. M. Identification of a deep marine source of particulate organic-carbon using bomb C-14. Nature 347, 172–174 (1990).

    Article  Google Scholar 

  9. 9

    Benner, R. & Amon, R. M. W. The size–reactivity continuum of major bioelements in the ocean. Ann. Rev. Mar. Sci. 7, 185–205 (2015).

    Article  Google Scholar 

  10. 10

    Walker, B. D., Beaupre, S. R., Guilderson, T. P., Druffel, E.R.M. & McCarthy, M. D. Large-volume ultrafiltration for the study of radiocarbon signatures and size vs. age relationships in marine dissolved organic matter. Geochim. Cosmochim. Acta 75, 5187–5202 (2011).

    Article  Google Scholar 

  11. 11

    Amon, R. M. W. & Benner, R. Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr. 41, 41–51 (1996).

    Article  Google Scholar 

  12. 12

    Benner, R. & Herndl, G. J. in Microbial Carbon Pump in the Ocean (eds Jiao, N., Azam, F. & Sanders, S.) 46–48 (Science AAAS, 2011).

    Google Scholar 

  13. 13

    Brophy, J. E. & Carlson, D. J. Production of biologically refractory dissolved organic carbon by natural seawater microbial populations. Deep-Sea Res. 36, 497–507 (1989).

    Article  Google Scholar 

  14. 14

    Walker, B. D., Guilderson, T. P., Okimura, K. M., Peacock, M. B. & McCarthy, M. D. Radiocarbon signatures and size–age–composition relationships of major organic matter pools within a unique California upwelling system. Geochim. Cosmochim. Acta 126, 1–17 (2014).

    Article  Google Scholar 

  15. 15

    Walker, B. D. & McCarthy, M. D. Elemental and isotopic characterization of dissolved and particulate organic matter in a unique California upwelling system: importance of size and composition in the export of labile material. Limnol. Oceanogr. 57, 1757–1774 (2012).

    Article  Google Scholar 

  16. 16

    Benner, R. in Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. A. & Carlson, C. A.) 59–90 (Academic, 2002).

    Google Scholar 

  17. 17

    Smith, D. C., Simon, M., Alldredge, A. L. & Azam, F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapide particle dissolution. Nature 359, 139–142 (1992).

    Article  Google Scholar 

  18. 18

    Middelburg, J. J. Chemoautotrophy in the ocean. Geophys. Res. Lett. 38, L24604 (2011).

    Article  Google Scholar 

  19. 19

    Ingalls, A. E. et al. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proc. Natl Acad. Sci. USA 103, 6442–6447 (2006).

    Article  Google Scholar 

  20. 20

    Rau, G. H. Another recipe for bomb C-14 dilution. Nature 350, 116 (1991).

    Article  Google Scholar 

  21. 21

    Verdugo, P. Marine microgels. Ann. Rev. Mar. Sci. 4, 375–400 (2012).

    Article  Google Scholar 

  22. 22

    Babbin, A. R., Keil, R. G., Devol, A. H. & Ward, B. B. Organic matter stoichiometry, flux, and oxygen control nitrogen loss in the ocean. Science 344, 406–408 (2014).

    Article  Google Scholar 

  23. 23

    McCarthy, M. D. et al. Chemosynthetic origin of 14C-depleted dissolved organic matter in a ridge-flank hydrothermal system. Nat. Geosci. 4, 32–36 (2011).

    Article  Google Scholar 

  24. 24

    Muller-Karger, F. E. et al. The importance of continental margins in the global carbon cycle. Geophys. Res. Lett. 32, L01602 (2005).

    Article  Google Scholar 

  25. 25

    Pohlman, J. W., Bauer, J. E., Waite, W. F., Osburn, C. L. & Chapman, N. R. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans. Nat. Geosci. 4, 37–41 (2011).

    Article  Google Scholar 

  26. 26

    Feely, R. A. et al. Oxygen utilization and organic carbon remineralization in the upper water column of the Pacific Ocean. J. Oceanogr. 60, 45–52 (2004).

    Article  Google Scholar 

  27. 27

    Emerson, S. Annual net community production and the biological carbon flux in the ocean. Glob. Biogeochem. Cycles 28, 14–28 (2014).

    Article  Google Scholar 

  28. 28

    Druffel, E. R. M. & Griffin, S. Radiocarbon in dissolved organic carbon of the South Pacific Ocean. Geophys. Res. Lett. 42, 4096–4101 (2015).

    Article  Google Scholar 

  29. 29

    Bauer, J. E. & Druffel, E. R. M. Ocean margins as a significant source of organic matter to the deep open ocean. Nature 392, 482–485 (1998).

    Article  Google Scholar 

  30. 30

    Arrieta, J. M. et al. Dilution limits dissolved organic carbon utilization in the deep ocean. Science 348, 331–333 (2015).

    Article  Google Scholar 

  31. 31

    Reeburgh, W. S. Figures summarizing the global cycles of biogeochemically important elements. Bull. Ecol. Soc. Am. 78, 260–267 (1997).

    Google Scholar 

  32. 32

    Roland, L. A., McCarthy, M. D., Peterson, T. D. & Walker, B. D. A large-volume micro-filtration system for isolating suspended particulate organic matter: fabrication and assessment vs. GFF filters in central N. Pacific. Limnol. Oceanogr. 7, 64–80 (2009).

    Article  Google Scholar 

  33. 33

    Vogel, J. S., Southon, J. R. & Nelson, D. E. Catalyst and binder effects in the use of filamentous graphite for Ams. Nucl. Instr. Meth. Phys. Res. B 29, 50–56 (1987).

    Article  Google Scholar 

  34. 34

    Beaupre, S. R., Druffel, E. R. M. & Griffin, S. A low-blank photochemical extraction system for concentration and isotopic analyses of marine dissolved organic carbon. Limnol. Oceanogr. 5, 174–184 (2007).

    Article  Google Scholar 

  35. 35

    Stuiver, M. & Polach, H. A. Discussion: reporting of 14C data. Radiocarbon 19, 355–363 (1977).

    Article  Google Scholar 

  36. 36

    Sheldon, R. W., Prakash, A. & Sutcliff, W. H. Jr Size distribution of particles in the ocean. Limnol. Oceanogr. 17, 327–340 (1972).

    Article  Google Scholar 

  37. 37

    Chisholm, S. W. Phytoplankton size. Environ. Sci. Res. 43, 213–237 (1992).

    Google Scholar 

  38. 38

    Hertkorn, N. et al. Characterization of a major refractory component of marine dissolved organic matter. Geochim. Cosmochim. Acta 70, 2990–3010 (2006).

    Article  Google Scholar 

  39. 39

    D’Andrilli, J. et al. Comprehensive characterization of marine dissolved organic matter by Fourier transform ion cyclotron resonance mass spectrometry with electrospray and atmospheric pressure photoionization. Rapid Commun. Mass Spectrom. 24, 643–650 (2010).

    Article  Google Scholar 

  40. 40

    Dittmar, T. & Kattner, G. Recalcitrant dissolved organic matter in the ocean: major contribution of small amphiphilics. Mar. Chem. 82, 115–123 (2003).

    Article  Google Scholar 

  41. 41

    Repeta, D. J. & Aluwihare, L. I. Radiocarbon analysis of neutral sugars in high-molecular-weight dissolved organic carbon: Implications for organic carbon cycling. Limnol. Oceanogr. 51, 1045–1053 (2006).

    Article  Google Scholar 

  42. 42

    Toggweiler, J. R., Dixon, K. & Bryan, K. Simulations of radiocarbon in a coarse-resolution world ocean model 1. Steady-state prebomb distributions. J. Geophys. Res. 94, 8217–8242 (1989).

    Article  Google Scholar 

  43. 43

    Masiello, C. A., Druffel, E. R. M. & Bauer, J. E. Physical controls on dissolved inorganic radiocarbon variability in the California current. Deep-Sea Res. II 45, 617–642 (1998).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge B. Phillips, the staff of the Granite Canyon Marine Pollution Studies Laboratory (GCMPSL) and the Natural Energy Laboratory of Hawaii Authority (NELHA) for providing facilities capable of large-volume seawater DOM and suspended POM isolations. K. Okimura, J. Walker, L. Roland, K. Walker, G. V. Reixach, and M. Calleja (UC Santa Cruz) aided with fieldwork and sample collection. S. Griffin (UCI) and P. Zermeno (LLNL) aided with sample analysis. F. Primeau (UCI) aided with error analysis and Matlab scripts. This work was funded by the Friends of Long Marine Lab Student Research Awards (to B.D.W.), the UC Santa Cruz STEPS Institute for Innovation in Environmental Research (to B.D.W.), the UC Santa Cruz Center for the Dynamics and Evolution of the Land-Sea Interface (to B.D.W.), the Earl H. Myers and Ethel M. Myers Oceanographic and Marine Biology Trust (to B.D.W.), the UC Santa Cruz Institute of Geophysics and Planetary Physics (to B.D.W. and M.D.M.), NSF OCE-1358041 and NSF OCE-0623622 (M.D.M.) and NSF ARC-1022716 (E.R.M.D.). A portion of this work was performed under the auspices of the US Department of Energy (contract W-7405-Eng-48 and DE-AC52-07NA27344) and a Keck Carbon Cycle AMS Laboratory Postdoctoral Scholarship (B.D.W.).

Author information

Affiliations

Authors

Contributions

B.D.W. conceived the research; B.D.W., S.R.B., T.P.G., M.D.M. and E.R.M.D. performed research; S.R.B., T.P.G., and E.R.M.D. contributed new reagents/analytical tools and models; B.D.W., S.R.B., T.P.G., E.R.M.D. and M.D.M. analysed data; B.D.W. wrote the paper with inputs from S.R.B., T.P.G., M.D.M. and E.R.M.D.

Corresponding author

Correspondence to Brett D. Walker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1994 kb)

Supplementary Information

Supplementary Information (XLSX 228 kb)

Supplementary Information

Supplementary Information (TXT 0 kb)

Supplementary Information

Supplementary Information (TXT 2 kb)

Supplementary Information

Supplementary Information (XLSX 32 kb)

Supplementary Information

Supplementary Information (XLSX 33 kb)

Supplementary Information

Supplementary Information (XLSX 31 kb)

Supplementary Information

Supplementary Information (XLSX 34 kb)

Supplementary Information

Supplementary Information (XLSX 31 kb)

Supplementary Information

Supplementary Information (XLSX 64 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Walker, B., Beaupré, S., Guilderson, T. et al. Pacific carbon cycling constrained by organic matter size, age and composition relationships. Nature Geosci 9, 888–891 (2016). https://doi.org/10.1038/ngeo2830

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing