Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Proportions of convective and stratiform precipitation revealed in water isotope ratios

Abstract

Tropical and midlatitude precipitation is fundamentally of two types, spatially limited and high-intensity convective or widespread and lower-intensity stratiform, owing to differences in vertical air motions and microphysical processes governing rain formation. These processes are difficult to observe or model and precipitation partitioning into rain types is critical for understanding how the water cycle responds to changes in climate. Here, we combine two independent data sets—convective and stratiform precipitation fractions, derived from the Tropical Rainfall Measuring Mission satellite or synoptic cloud observations, and stable isotope and tritium compositions of surface precipitation, derived from a global network—to show that isotope ratios reflect rain type proportions and are negatively correlated with stratiform fractions. Condensation and riming associated with boundary layer moisture produces higher isotope ratios in convective rain, along with higher tritium when riming in deep convection occurs with entrained air at higher altitudes. On the basis of our data, stable isotope ratios can be used to monitor changes in the character of precipitation in response to periodic variability or changes in climate. Our results also provide observational constraints for an improved simulation of convection in climate models and a better understanding of isotope variations in proxy archives, such as speleothems and tropical ice.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Correlation of mean monthly δ18O, stratiform fraction and precipitation amount in tropical and midlatitude precipitation.
Figure 2: Schematic representation of differences in dynamical and microphysical processes in convective and stratiform precipitation resulting in isotope variations.
Figure 3: Correlation of mean monthly δ18O, stratiform fraction and maximum height of 40-dBZ echo.
Figure 4: Correlation of monthly precipitation tritium (3H) content with stratiform fractions and δ18O.

References

  1. 1

    Dansgaard, W. The abundance of O18 in atmospheric water and water vapour. Tellus 5, 461–469 (1953).

    Article  Google Scholar 

  2. 2

    Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).

    Article  Google Scholar 

  3. 3

    Gedzelman, S. D. & Lawrence, J. R. The isotopic composition of cyclonic precipitation. J. Appl. Meteorol. 21, 1385–1404 (1982).

    Article  Google Scholar 

  4. 4

    Gat, J. R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 24, 225–262 (1996).

    Article  Google Scholar 

  5. 5

    Risi, C. et al. Evolution of the stable water isotopic composition of the rain sampled along Sahelian squall lines. Q. J. R. Meteorol. Soc. 136, 227–242 (2010).

    Article  Google Scholar 

  6. 6

    Kurita, N. et al. Intraseasonal isotopic variation associated with the Madden-Julian Oscillation. J. Geophys. Res. 116, D24101 (2011).

    Article  Google Scholar 

  7. 7

    Gao, J. et al. What controls precipitation δ18O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam. Tellus B 65, 21043–21055 (2013).

    Article  Google Scholar 

  8. 8

    Coplen, T. B. et al. Categorisation of northern California rainfall for periods with and without a radar brightband using stable isotopes and a novel automated precipitation collector. Tellus B 67, 28574 (2015).

    Article  Google Scholar 

  9. 9

    Jouzel, J. Treatise on Geochemistry Vol. 5, 2nd edn, 213–256 (Elsevier, 2014).

    Book  Google Scholar 

  10. 10

    Gedzelman, S. D. & Arnold, R. Modeling the isotopic composition of precipitation. J. Geophys. Res. 99, 10455–10471 (1994).

    Article  Google Scholar 

  11. 11

    Kurita, N. Water isotopic variability in response to mesoscale convective system over the tropical ocean. J. Geophys. Res. 118, 1–15 (2013).

    Google Scholar 

  12. 12

    Sturm, C., Zhang, Q. & Noone, D. An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology. Clim. Past 6, 115–129 (2010).

    Article  Google Scholar 

  13. 13

    Sutanto, S. J. et al. Atmospheric processes governing the changes in water isotopologues during ENSO events from model and satellite measurements. J. Geophys. Res. 120, 6712–6729 (2015).

    Google Scholar 

  14. 14

    Aggarwal, P. K. et al. New capabilities for studies using isotopes in the water cycle. Eos Trans. AGU 88, 537–538 (2007).

    Article  Google Scholar 

  15. 15

    Moerman, J. W. et al. Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology. Earth Planet. Sci. Lett. 369, 108–119 (2013).

    Article  Google Scholar 

  16. 16

    Fudeyasu, H. et al. Effects of large-scale moisture transport and mesoscale processes on precipitation isotope ratios observed at Sumatera, Indonesia. J. Meteorol. Soc. Jpn 89, 49–59 (2011).

    Article  Google Scholar 

  17. 17

    Aggarwal, P. K. et al. Stable isotopes in global precipitation: a unified interpretation based on atmospheric moisture residence time. Geophys. Res. Lett. 39, L11705 (2012).

    Article  Google Scholar 

  18. 18

    Houze, R. A. Jr Stratiform precipitation in regions of convection: a meteorological paradox? Bull. Am. Meteorol. Soc. 78, 2179–2196 (1997).

    Article  Google Scholar 

  19. 19

    Houze, R. A. Jr Cloud Dynamics (International Geophysics Series 104, Academic, 2014).

    Google Scholar 

  20. 20

    Houze, R. A. Jr Structures of atmospheric precipitation systems: a global survey. Radio Sci. 16, 671–689 (1981).

    Article  Google Scholar 

  21. 21

    Schumacher, C. & Houze, R. A. Jr Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Clim. 16, 1739–1756 (2003).

    Article  Google Scholar 

  22. 22

    Stith, J. L. et al. Microphysical observations of tropical clouds. J. Appl. Meteorol. 41, 97–117 (2002).

    Article  Google Scholar 

  23. 23

    Steiner, M. & Smith, J. A. Convective versus stratiform rainfall: an ice-microphysical and kinematic conceptual model. Atmos. Res. 47, 317–326 (1998).

    Article  Google Scholar 

  24. 24

    Berg, P. et al. Strong increase in convective precipitation in response to higher temperatures. Nature Geosci. 6, 181–185 (2013).

    Article  Google Scholar 

  25. 25

    Prein, F. et al. A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev. Geophys. 53, 323–361 (2015).

    Article  Google Scholar 

  26. 26

    Liu, C. et al. A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteorol. Clim. 47, 2712–2728 (2008).

    Article  Google Scholar 

  27. 27

    Funk, A., Schumacher, C. & Awaka, J. Analysis of rain classifications over the tropics by version 7 of the TRMM PR 2A23 algorithm. J. Meteorol. Soc. Jpn 91, 257–272 (2013).

    Article  Google Scholar 

  28. 28

    Ehhalt, D. H., Rohrer, F. & Fried, A. Vertical profiles of HDO/H2O in the troposphere. J. Geophys. Res. 110, 7351–7366 (2005).

    Article  Google Scholar 

  29. 29

    Bolin, B. On the use of tritium as a tracer for water in nature. Proc. Second United Nations Intl. Conf. Peaceful Uses of Atomic Energy Vol. 18, 336–343 (United Nations, 1959).

    Google Scholar 

  30. 30

    Nelson, J. Theory of isotopic fractionation on facetted ice crystals. Atmos. Chem. Phys. 11, 11351–11360 (2011).

    Article  Google Scholar 

  31. 31

    Knight, C. A. et al. Radial and tangential variation of deuterium in hailstones. J. Atmos. Sci. 32, 1990–2000 (1975).

    Article  Google Scholar 

  32. 32

    Zipser, E. J. et al. Where are the most intense thunderstorms on Earth? Bull. Am. Meteorol. Soc. 87, 1057–1071 (2006).

    Article  Google Scholar 

  33. 33

    Romatschke, U. & Houze, R. A. Jr Characteristics of precipitating convective systems in the South Asian monsoon. J. Hydrometeorol. 12, 3–26 (2011).

    Article  Google Scholar 

  34. 34

    Ehhalt, D. H. Vertical profiles and transport of HTO in the troposphere. J. Geophys. Res. 76, 7351–7367 (1971).

    Article  Google Scholar 

  35. 35

    Liu, C. & Zipser, E. J. The global distribution of largest, deepest, and most intense precipitation systems. Geophys. Res. Lett. 42, 3561–3595 (2015).

    Google Scholar 

  36. 36

    Parker, M. D. & Johnson, R. H. Organizational modes of midlatitude mesoscale convective systems. Mon. Weath. Rev. 128, 3413–3436 (2000).

    Article  Google Scholar 

  37. 37

    Trenberth, K. E. & Caron, J. M. The Southern Oscillation revisited: sea level pressures, surface temperatures, and precipitation. J. Clim. 13, 4358–4365 (2000).

    Article  Google Scholar 

  38. 38

    Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  39. 39

    Westra, S. et al. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 52, 522–555 (2014).

    Article  Google Scholar 

  40. 40

    Houze, R. A. Jr Observed structure of mesoscale convective systems and implications for large-scale heating. Q. J. R. Meteorol. Soc. 115, 425–461 (1989).

    Article  Google Scholar 

  41. 41

    Dayem, K. E. et al. Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia. Earth Planet. Sci. Lett. 295, 219–230 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Izewski of IAEA for assistance with graphic illustrations.

Author information

Affiliations

Authors

Contributions

P.K.A. initiated the project and wrote the paper; U.R., D.B., C.S. and A.F. provided TRMM data; L.A.-A. processed isotope and related data; P.B. contributed cloud-based stratiform fractions; all authors contributed to data evaluation and commented on the manuscript.

Corresponding author

Correspondence to Pradeep K. Aggarwal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, P., Romatschke, U., Araguas-Araguas, L. et al. Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nature Geosci 9, 624–629 (2016). https://doi.org/10.1038/ngeo2739

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing