Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic

Abstract

Precambrian supercontinents Nuna-Columbia (1.7 to 1.3 billion years ago) and Rodinia (1.1 to 0.7 billion years ago) have been proposed. However, the arrangements of crustal blocks within these supercontinents are poorly known. Huge, dominantly basaltic magmatic outpourings and intrusions, covering up to millions of square kilometres, termed Large Igneous Provinces, typically accompany (super) continent breakup, or attempted breakup and offer an important tool for reconstructing supercontinents. Here we focus on the Large Igneous Province record for Siberia and Laurentia, whose relative position in Nuna-Columbia and Rodinia reconstructions is highly controversial. We present precise geochronology—nine U–Pb and six Ar–Ar ages—on dolerite dykes and sills, along with existing dates from the literature, that constrain the timing of emplacement of Large Igneous Province magmatism in southern Siberia and northern Laurentia between 1,900 and 720 million years ago. We identify four robust age matches between the continents 1,870, 1,750, 1,350 and 720 million years ago, as well as several additional approximate age correlations that indicate southern Siberia and northern Laurentia were probably near neighbours for this 1.2-billion-year interval. Our reconstructions provide a framework for evaluating the shared geological, tectonic and metallogenic histories of these continental blocks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LIP event barcodes for southern Siberia and northern Laurentia (apart from the Chieress event, which is from northern Siberia).
Figure 2: LIP events of southern Siberia and northern Laurentia.

Similar content being viewed by others

References

  1. Hoffman, P. F. Did the breakout of Laurentia turn Gondwanaland inside-out? Science 252, 1409–1412 (1991).

    Article  Google Scholar 

  2. Condie, K. C. & Rosen, O. M. Laurentia–Siberia connection revisited. Geology 22, 168–170 (1994).

    Article  Google Scholar 

  3. Rainbird, R. H. et al. U–Pb geochronology of Riphean sandstone and gabbro from southeastern Siberia and its bearing on the Laurentia–Siberia connection. Earth Planet. Sci. Lett. 164, 409–420 (1998).

    Article  Google Scholar 

  4. Sears, J. W. & Price, R. A. Tightening the Siberian connection to western Laurentia. Geol. Soc. Am. Bull. 115, 943–953 (2003).

    Article  Google Scholar 

  5. Buchan, K. L. Reprint of ‘Key paleomagnetic poles and their use in Proterozoic continent and supercontinent reconstructions: A review’. Precambr. Res. 244, 5–22 (2014).

    Article  Google Scholar 

  6. Buchan, K. L., Mitchell, R. N., Bleeker, W., Hamilton, M. A. & LeCheminant, A. N. Paleomagnetism of ca. 2.13–2.11 Ga Indin and ca. 1.885 Ga Ghost dyke swarms of the Slave craton: implications for the Slave craton APW path and relative drift of Slave, Superior and Siberian cratons in the Paleoproterozoic. Precambr. Res. 275, 151–175 (2016).

    Article  Google Scholar 

  7. Evans, D. A. D. & Mitchell, R. N. Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna. Geology 39, 443–446 (2011).

    Article  Google Scholar 

  8. Didenko, A. N., Vodovozov, V. Y., Peskov, A. Y., Guryanov, V. A. & Kosynkin, A. V. Paleomagnetism of the Ulkan massif (SE Siberian platform) and the apparent polar wander path for Siberia in late Paleoproterozoic–early Mesoproterozoic times. Precambr. Res. 259, 58–77 (2015).

    Article  Google Scholar 

  9. Pisarevsky, S. A., Natapov, L. M., Donskaya, T. V., Gladkochub, D. P. & Vernikovsky, V. A. Proterozoic Siberia: a promontory of Rodinia. Precambr. Res. 160, 66–76 (2008).

    Article  Google Scholar 

  10. Pisarevsky, S. A., Elming, S.-Å., Pesonen, L. J. & Li, Z.-X. Mesoproterozoic paleogeography: supercontinent and beyond. Precambr. Res. 244, 207–225 (2014).

    Article  Google Scholar 

  11. Li, Z.-X. et al. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambr. Res. 160, 179–210 (2008).

    Article  Google Scholar 

  12. Piper, J. D. A. The Neoproterozoic supercontinent Palaeopangaea. Gondwana Res. 12, 202–227 (2007).

    Article  Google Scholar 

  13. Smethurst, N. A., Khramov, A. N. & Torsvik, T. H. The Neoproterozoic and Palaeozoic palaeomagnetic data from the Siberian platform: from Rodinia to Pangea. Earth Sci. Rev. 43, 1–24 (1998).

    Article  Google Scholar 

  14. Evans, D. A. D. in Ancient Orogens and Modern Analogues Vol. 327 (eds Murphy, J. B., Keppie, J. D. & Hynes, A.) 371–405 (Geological Society of London Special Publication, 2009).

    Google Scholar 

  15. Ernst, R. E., Bleeker, W., Söderlund, U. & Kerr, A. C. Large Igneous Provinces and supercontinents: toward completing the plate tectonic revolution. Lithos 174, 1–14 (2013).

    Article  Google Scholar 

  16. Ernst, R. E. Large Igneous Provinces (Cambridge Univ. Press, 2014).

    Book  Google Scholar 

  17. Heaman, L. M. & LeCheminant, A. N. Paragenesis and U–Pb systematics of baddeleyite (ZrO2). Chem. Geol. 110, 95–126 (1993).

    Article  Google Scholar 

  18. Chamberlain, K. R. et al. In situ U–Pb SIMS (IN-SIMS) micro-baddeleyite dating of mafic rocks: method with examples. Precambr. Res. 183, 379–387 (2010).

    Article  Google Scholar 

  19. Söderlund, U. et al. Reply to Comment on ‘U–Pb baddeleyite ages and geochemistry of dolerite dykes in the Bas-Draâ Inlier of the Anti-Atlas of Morocco: newly identified 1380 Ma event in the West African Craton’ by André Michard and Dominique Gasquet. Lithos 174, 101–108 (2013).

    Article  Google Scholar 

  20. Bleeker, W. & Ernst, R. in Dyke Swarms – Time Markers of Crustal Evolution (eds Hanski, E., Mertanen, S., Rämö, T. & Vuollo, J.) 3–26 (Taylor and Francis/Balkema, 2006).

    Book  Google Scholar 

  21. Ernst, R. E. & Bleeker, W. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the present. Can. J. Earth Sci. 47, 695–739 (2010).

    Article  Google Scholar 

  22. Cox, G. M. et al. Kikiktat volcanics of Arctic Alaska—Melting of harzburgitic mantle associated with the Franklin Large Igneous Province. Lithosphere 7, 275–295 (2015).

    Article  Google Scholar 

  23. Hadlari, T., Davis, W. J. & Dewing, K. A pericratonic model for the Pearya terrane as an extension of the Franklinian margin of Laurentia, Canadian Arctic. Geol. Soc. Am. Bull. 126, 182–200 (2013).

    Article  Google Scholar 

  24. Fahrig, W. F. in Mafic Dyke Swarms Vol. 34 (eds Hall, H. C. & Fahrig, W. F.) 331–348 (Geological Association of Canada Special Paper, 1987).

    Google Scholar 

  25. Heaman, L. M., LeCheminant, A. N. & Rainbird, R. H. Nature and timing of Franklin igneous events, Canada: implications for a Late Proterozoic mantle plume and the break-up of Laurentia. Earth Planet. Sci. Lett. 109, 117–131 (1992).

    Article  Google Scholar 

  26. Denyszyn, S. W., Halls, H. C., Davis, D. W. & Evans, D. A. D. Paleomagnetism and U–Pb geochronology of Franklin dykes in High Arctic Canada and Greenland: a revised age and paleomagnetic pole constraining block rotations in the Nares Strait region. Can. J. Earth Sci. 46, 689–705 (2009).

    Article  Google Scholar 

  27. Macdonald, F. A. et al. Calibrating the cryogenian. Science 327, 1241–1243 (2010).

    Article  Google Scholar 

  28. Buchan, K. L. et al. Proterozoic Magmatic Events of the Slave Craton, Wopmay Orogen and Environs (Geological Survey of Canada, Open File 5985, Natural Resources Canada, 2010).

    Book  Google Scholar 

  29. Buchan, K. L. & Ernst, R. E. Diabase Dyke Swarms of Nunavut, Northwest Territories, and Yukon, Canada (Geological Survey of Canada, Open File 7464, Natural Resources Canada, 2013).

    Book  Google Scholar 

  30. Ariskin, A. A. et al. Geochronology of the Dovyren intrusive complex, Northwestern Baikal area, Russia, in the Neoproterozoic. Geochem. Int. 51, 859–875 (2013).

    Article  Google Scholar 

  31. Polyakov, G. V. et al. Ultramafic–mafic igneous complexes of the Precambrian East Siberian metallogenic province (southern framing of the Siberian craton): age, composition, origin, and ore potential. Russ. Geol. Geophys. 54, 1319–1331 (2013).

    Article  Google Scholar 

  32. Gladkochub, D. P. et al. Proterozoic mafic magmatism in Siberian craton: an overview and implications for paleocontinental reconstruction. Precambr. Res. 183, 660–668 (2010).

    Article  Google Scholar 

  33. Nozhkin, A. D., Kachevskii, L. K. & Dmitrieva, N. V. The Late Neoproterozoic rift-related metarhyolite–basalt association of the Glushikha trough (Yenisei Ridge): petrogeochemical composition, age, and formation conditions. Russ. Geol. Geophys. 54, 44–54 (2013).

    Article  Google Scholar 

  34. Peterson, T. D., Scott, J. M. J., LeCheminant, A. N., Jefferson, C. W. & Pehrsson, S. J. The Kivalliq Igneous Suite: anorogenic bimodal magmatism at 1.75 Ga in the western Churchill Province, Canada. Precambr. Res. 262, 101–119 (2015).

    Article  Google Scholar 

  35. Bright, R. M., Amato, J. M., Denyszyn, S. W. & Ernst, R. E. U–Pb geochronology of 1.1 Ga diabase in the southwestern United States: testing models for the origin of a post-Grenville Large Igneous Province. Lithosphere 6, 135–156 (2014).

    Article  Google Scholar 

  36. Gladkochub, D. P. et al. The first evidence of Paleoproterozoic late-collision basite magmatism in the near-Sayan salient of the Siberian craton basement. Dokl. Earth Sci. 450, 583–586 (2013).

    Article  Google Scholar 

  37. Baragar, W. R. A., Ernst, R. E., Hulbert, L. & Peterson, T. Longitudinal petrochemical variation in the Mackenzie dyke swarm, northwestern Canadian Shield. J. Petrol. 37, 317–359 (1996).

    Article  Google Scholar 

  38. Upton, B. G. J. et al. The Mesoproterozoic Zig–Zag Dal basalts and associated intrusions of eastern North Greenland: mantle plume-lithosphere interaction. Contrib. Mineral. Petrol. 149, 40–56 (2005).

    Article  Google Scholar 

  39. Ernst, R. E., Buchan, K. L., Hamilton, M. A., Okrugin, A. V. & Tomshin, M. D. Integrated paleomagnetism and U–Pb geochronology of mafic dikes of the eastern Anabar Shield region, Siberia: implications for Mesoproterozoic paleolatitude of Siberia and comparison with Laurentia. J. Geol. 108, 381–401 (2000).

    Article  Google Scholar 

  40. Metelkin, D. V. et al. Paleomagnetic directions from Nersa intrusions of the Biryusa terrane, Siberian craton, as a reflection of tectonic events in the Neoproterozoic. Russ. Geol. Geophys. 46, 395–410 (2005).

    Google Scholar 

  41. Halls, H. C., Hamilton, M. A. & Denyszyn, S. W. in Keys for Geodynamic Interpretation (ed. Srivasatava, R. K.) 509–535 (Springer, 2011).

    Book  Google Scholar 

  42. Bleeker, W. & Ernst, R. E. in 39th Annual Yellowknife Geoscience Forum Abstracts YKGSF Abstracts Vol. 2011 (eds Fischer, B. J. & Watson, D. M.) 22–23 (Northwest Territories Geoscience Office, 2011).

    Google Scholar 

  43. Larin, A. M. Ulkan–Dzhugdzhur Ore-Bearing Anorthosite–Rapakivi Granite–Peralkaline Granite Association, Siberian Craton: age, tectonic setting, sources, and metallogeny. Geol. Ore Deposits 56, 257–280 (2014).

    Article  Google Scholar 

  44. Sandeman, H. A., Ootes, L., Cousens, B. & Killian, T. Petrogenesis of Gunbarrel magmatic rocks: homogeneous continental tholeiites associated with extension and rifting of Neoproterozoic Laurentia. Precambr. Res. 252, 166–179 (2014).

    Article  Google Scholar 

  45. Hamilton, M. A. & Buchan, K. L. U–Pb geochronology of the Western Channel diabase, northwestern Laurentia: implications for a large 1.59 Ga magmatic province, Laurentia’s APWP and paleocontinental reconstructions of Laurentia, Baltica and Gawler craton of southern Australia. Precambr. Res. 183, 463–473 (2010).

    Article  Google Scholar 

  46. Corrigan, D., Pehrsson, S., Wodicka, N. & De Kemp, E. in Ancient Orogens and Modern Analogues Vol. 327 (eds Murphy, J. B., Keppie, J. D. & Hynes, A. J.) 457–479 (Geological Society of London Special Publication, 2009).

    Google Scholar 

  47. Ernst, R. E. et al. The 1501 Ma Kuonamka Large Igneous Province of northern Siberia: U–Pb geochronology, geochemistry, and links with coeval magmatism on other crustal blocks. Russ. Geol. Geophys. 57, 657–675 (2016).

    Article  Google Scholar 

  48. Cederberg, J., Söderlund, U., Oliveira, E. P., Ernst, R. E. & Pisarevsky, S. A. U–Pb Baddeleyite Dating of the Proterozoic Pará de Minas Dyke Swarm in the São Francisco Craton (Brazil) – Implications for Tectonic Correlation with the Siberian, Congo and the North China Cratons. GFF (in the press, 2016).

  49. Li, Z. X. et al. How not to build a supercontinent: a reply to J. D. A. Piper. Precambr. Res. 174, 208–214 (2009).

    Article  Google Scholar 

  50. Ernst, R. E. & Jowitt, S. M. Large Igneous Provinces (LIPs) and metallogeny. Soc. Econ. Geol. Spec. Publ. 17, 17–51 (2013).

    Google Scholar 

  51. Roest, W. R. & Srivastava, S. P. Sea-floor spreading in the Labrador Sea: a new reconstruction. Geology 17, 1000–1003 (1989).

    Article  Google Scholar 

  52. Pavlov, V. E., Bachtadse, V. & Mikhailov, V. New Middle Cambrian and Middle Ordovician palaeomagnetic data from Siberia: Llandelian magnetostratigraphy and relative rotation between the Aldan and Anabar-Angara blocks. Earth Planet. Sci. Lett. 276, 229–242 (2008).

    Article  Google Scholar 

  53. Eglington, B. M. et al. A domain-based digital summary of the evolution of the Palaeoproterozoic of North America and Greenland and associated unconformity-related uranium mineralization. Precambr. Res. 232, 4–26 (2013).

    Article  Google Scholar 

  54. Söderlund, U. & Johansson, L. A simple way to extract baddeleyite (ZrO2). Geochem. Geophys. Geosyst. 3, http://dx.doi.org/10.1029/2001GC000212 (2002).

  55. Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. 4, 1889–1906 (1971).

    Google Scholar 

  56. Ludwig, K. R. ISOPLOT for MS-DOS, A Plotting and Regression Program for Radiogenic-Isotope Data, for IBM-PC Compatible Computers version 2.75, Open-File Report 91-445 (US Geological Survey, 1991).

  57. Ludwig, K. R. Isoplot 3.70. A Geochronological Toolkit for Microsoft Excel Vol. 4 (Berkeley Geochronology Center Special Publication, 2003).

    Google Scholar 

  58. Nilsson, M. K. M. et al. Precise U–Pb baddeleyite ages of mafic dykes and intrusions in southern West Greenland and implications for a possible reconstruction with the Superior craton. Precambr. Res. 183, 399–415 (2010).

    Article  Google Scholar 

  59. Krogh, T. E. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 37, 485–494 (1973).

    Article  Google Scholar 

  60. Roddick, J. C. High precision intercalibration of 40Ar–39Ar standards. Geochim. Cosmochim. Acta 47, 887–898 (1983).

    Article  Google Scholar 

  61. Turner, G., Huneke, J. C., Podosek, F. A. & Wasserburg, G. J. 40Ar–39Ar ages and cosmic ray exposure ages of Apollo 14 samples. Earth Planet. Sci. Lett. 12, 19–35 (1971).

    Article  Google Scholar 

  62. Steiger, R. H. & Jäger, E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 36, 359–362 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

This is publication number 53 of the Large Igneous Provinces—Supercontinent Reconstruction—Resource Exploration Project funded by an industry consortium and Canadian grant NSERC CRDPJ 419503-11 (www.supercontinent.org; www.camiro.org/exploration/ongoing-projectsCAMIROProject08E03).

Author information

Authors and Affiliations

Authors

Contributions

R.E.E. led and coordinated the research and manuscript preparation. M.A.H. and U.S. produced key ID-TIMS U–Pb ages and their interpretation. J.A.H. produced key Ar–Ar ages and their interpretation. K.R.C. assisted in the interpretation of the geochronology results. A.V.O., T.K., A.S.M. and A.N.L. provided key samples for U–Pb dating and assisted in the interpretation of their results. D.P.G. and A.N.D. assisted in the interpretation of the Russian data and its geological context. W.B. provided insight into the LIP correlations and their limitations. K.L.B. provided the background palaeomagnetic context. M.A.H., K.L.B. and A.N.L. were also heavily involved in aspects of preparation, revision and/or finalizing of the overall manuscript.

Corresponding author

Correspondence to R. E. Ernst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4886 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ernst, R., Hamilton, M., Söderlund, U. et al. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nature Geosci 9, 464–469 (2016). https://doi.org/10.1038/ngeo2700

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2700

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing