Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Large contribution to inland water CO2 and CH4 emissions from very small ponds

This article has been updated


Inland waters are an important component of the global carbon cycle. Although they contribute to greenhouse gas emissions1,2,3,4,5, estimates of carbon processing in these waters are uncertain. The global extent of very small ponds, with surface areas of less than 0.001 km2, is particularly difficult to map, resulting in their exclusion from greenhouse gas budget estimates. Here we combine estimates of the lake and pond global size distribution, gas exchange rates, and measurements of carbon dioxide and methane concentrations from 427 lakes and ponds ranging in surface area from 2.5 m2 to 674 km2. We estimate that non-running inland waters release 0.583 Pg C yr−1. Very small ponds comprise 8.6% of lakes and ponds by area globally, but account for 15.1% of CO2 emissions and 40.6% of diffusive CH4 emissions. In terms of CO2 equivalence, the ratio of CO2 to CH4 flux increases with surface area, from about 1.5 in very small ponds to about 19 in large lakes. The high fluxes from very small ponds probably result from shallow waters, high sediment and edge to water volume ratios, and frequent mixing. These attributes increase CO2 and CH4 supersaturation in the water and limit efficient methane oxidation. We conclude that very small ponds represent an important inland water carbon flux.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: CO2 and CH4 concentrations in relation to lake surface area and latitude.
Figure 2: Estimated global flux of CO2 and CH4 for each lake size class.

Change history

  • 09 February 2016

    In the original version of this Letter published online, the scale of the x axis in panels a, c and e in Fig. 1 did not extend over the full data range, and as a result three data points were omitted from each panel. In addition, all instances of 'Supplementary Methods' and 'Supplementary References' have been changed to 'Supplementary Information'. This has been corrected in all versions of the Letter.


  1. 1

    Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172–185 (2007).

    Article  Google Scholar 

  2. 2

    Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article  Google Scholar 

  3. 3

    Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60 (2011).

    Article  Google Scholar 

  4. 4

    Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).

    Article  Google Scholar 

  5. 5

    Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geosci. 6, 597–607 (2013).

    Article  Google Scholar 

  6. 6

    Maybeck, M. in Physics and Chemistry of Lakes (eds Lerman, A., Imboden, D. M. & Gat, G. R.) 1–36 (Springer, 1995).

    Book  Google Scholar 

  7. 7

    Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).

    Article  Google Scholar 

  8. 8

    Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).

    Article  Google Scholar 

  9. 9

    McDonald, C. P., Rover, J. A., Stets, E. G. & Striegl, R. G. The regional abundance and size distribution of lakes and reservoirs in the United States and implications for estimates of global lake extent. Limnol. Oceanogr. 57, 597–606 (2012).

    Article  Google Scholar 

  10. 10

    Seekell, D. A., Pace, M. L., Tranvik, L. J. & Verpoorter, C. A fractal-based approach to lake size-distributions. Geophys. Res. Lett. 40, 517–521 (2013).

    Article  Google Scholar 

  11. 11

    Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).

    Article  Google Scholar 

  12. 12

    Kortelainen, P. et al. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Glob. Change Biol. 12, 1554–1567 (2006).

    Article  Google Scholar 

  13. 13

    Kankaala, P., Huotari, J., Tulonen, T. & Ojala, A. Lake-size dependent physical forcing drives carbon dioxide and methane effluxes from lakes in a boreal landscape. Limnol. Oceanogr. 58, 1915–1930 (2013).

    Article  Google Scholar 

  14. 14

    Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 18, GB4009 (2004).

    Article  Google Scholar 

  15. 15

    Juutinen, S. et al. Methane dynamics in different boreal lake types. Biogeosciences 6, 209–223 (2009).

    Article  Google Scholar 

  16. 16

    Holgerson, M. A. Drivers of carbon dioxide and methane supersaturation in small, temporary ponds. Biogeochemistry 124, 305–318 (2015).

    Article  Google Scholar 

  17. 17

    Sobek, S., Tranvik, L. J. & Cole, J. J. Temperature independence of carbon dioxide supersaturation in global lakes. Glob. Biogeochem. Cycles 19, GB2003 (2005).

    Article  Google Scholar 

  18. 18

    Bastviken, D., Cole, J. J., Pace, M. L. & Van de Bogert, M. C. Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. J. Geophys. Res. Biogeosci. 113, GO2024 (2008).

    Article  Google Scholar 

  19. 19

    Laurion, I. et al. Variability in greenhouse gas emissions from permafrost thaw ponds. Limnol. Oceanogr. 55, 115–133 (2010).

    Article  Google Scholar 

  20. 20

    Sepulveda-Jauregui, A., Walter Anthony, K. M., Martinez-Cruz, K., Greene, S. & Thalasso, F. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska. Biogeosciences 12, 3197–3223 (2015).

    Article  Google Scholar 

  21. 21

    Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50 (2011).

    Article  Google Scholar 

  22. 22

    Kankaala, P., Taipale, S., Nykänen, H. & Jones, R. I. Oxidation, efflux, and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake. J. Geophys. Res. Biogeosci. 112, G02033 (2007).

    Article  Google Scholar 

  23. 23

    Downing, J. A. Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29, 9–24 (2010).

    Google Scholar 

  24. 24

    Kirschke, S. et al. Three decades of global methane sources and sinks. Nature Geosci. 6, 813–823 (2013).

    Article  Google Scholar 

  25. 25

    Muster, S., Heim, B., Abnizova, A. & Boike, J. Water body distributions across scales: a remote sensing based comparison of three Arctic tundra wetlands. Remote Sens. 5, 1498–1523 (2013).

    Article  Google Scholar 

  26. 26

    Buffam, I. et al. Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district. Glob. Change Biol. 17, 1193–1211 (2011).

    Article  Google Scholar 

  27. 27

    Hanson, P. C., Carpenter, S. R., Cardille, J. A., Coe, M. T. & Winslow, L. A. Small lakes dominate a random sample of regional lake characteristics. Freshwat. Biol. 52, 814–822 (2007).

    Article  Google Scholar 

  28. 28

    Wu, Q., Lane, C. & Liu, H. An effective method for detecting potential woodland vernal pools using high-resolution LiDAR data and aerial imagery. Remote Sens. 6, 11444–11467 (2014).

    Article  Google Scholar 

  29. 29

    Halabisky, M., Moskal, L. M. & Hall, S. A. Object-based classification of semi-arid wetlands. J. Appl. Remote Sens. 5, 053511 (2011).

    Article  Google Scholar 

  30. 30

    Van Meter, R., Bailey, L. & Grant, E. C. Methods for estimating the amount of vernal pool habitat in the northeastern United States. Wetlands 28, 585–593 (2008).

    Article  Google Scholar 

  31. 31

    Abril, G. et al. Technical note: large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12, 67–78 (2015).

    Article  Google Scholar 

  32. 32

    St. Louis, V. L., Kelly, C. A., Duchemin, É., Rudd, J. W. M. & Rosenberg, D. M. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50, 766–775 (2000).

    Article  Google Scholar 

  33. 33

    Abril, G. et al. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Glob. Biogeochem. Cycles 19, GB4007 (2005).

    Article  Google Scholar 

  34. 34

    Butman, D. & Raymond, P. A. Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geosci. 4, 839–842 (2011).

    Article  Google Scholar 

  35. 35

    Duarte, C. M. et al. CO2 emissions from saline lakes: a global estimate of a surprisingly large flux. J. Geophys. Res. Biogeosci. 113, G04041 (2008).

    Article  Google Scholar 

  36. 36

    Striegl, R. G., Schindler, J. E., Wickland, K. P., Hudson, D. C. & Knight, G. C. Patterns of carbon dioxide and methane supersaturation in 34 Minnesota and Wisconsin lakes. Verh. Int. Verein. Limnol. 27, 1424–1427 (2000).

    Google Scholar 

  37. 37

    Striegl, R. G. et al. Carbon dioxide partial pressure and 13C content of north temperate and boreal lakes at spring ice melt. Limnol. Oceanogr. 46, 941–945 (2001).

    Article  Google Scholar 

  38. 38

    Huttunen, J. T. et al. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 52, 609–621 (2003).

    Article  Google Scholar 

  39. 39

    Catalan, N. et al. Carbon dioxide efflux during the flooding phase of temporary ponds. Limnetica 33, 349–359 (2014).

    Google Scholar 

  40. 40

    Fenner, N. & Freeman, C. Drought-induced carbon loss in peatlands. Nature Geosci. 4, 895–900 (2011).

    Article  Google Scholar 

  41. 41

    von Schiller, D. et al. Carbon dioxide emissions from dry watercourses. Inland Waters 4, 377–382 (2014).

    Article  Google Scholar 

  42. 42

    Etheridge, D. M., Steele, L. P., Francey, R. J. & Langenfelds, R. L. Atmospheric methane between 1000 A.D. and present: evidence of anthropogenic emissions and climatic variability. J. Geophys. Res. 103, 15979–15993 (1998).

    Article  Google Scholar 

  43. 43

    Cole, J. J. & Caraco, N. F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6 . Limnol. Oceanogr. 43, 647–656 (1998).

    Article  Google Scholar 

  44. 44

    Read, J. S. et al. Lake-size dependency of wind shear and convection as controls on gas exchange. Geophys. Res. Lett. 39, L09405 (2012).

    Article  Google Scholar 

  45. 45

    Kelly, C. A. et al. Natural variability of carbon dioxide and net epilimnetic production in the surface waters of boreal lakes of different sizes. Limnol. Oceanogr. 46, 1054–1064 (2001).

    Article  Google Scholar 

  46. 46

    Barros, N. et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geosci. 4, 593–596 (2011).

    Article  Google Scholar 

Download references


M.A.H. was supported by a National Science Foundation Graduate Research Fellowship (DGE-1122492) and Yale University School of Forestry and Environmental Studies. We thank D. Skelly and D. Post for helpful discussion and comments on a previous version of the manuscript. We also thank the authors whose data we included in this meta-analysis.

Author information




M.A.H. and P.A.R. conceived and designed the analysis. M.A.H. compiled all data, performed data analysis, and wrote most of the manuscript. P.A.R. aided in data interpretation and helped to write the manuscript.

Corresponding author

Correspondence to Meredith A. Holgerson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 655 kb)

Supplementary Information

Supplementary Information (XLS 462 kb)

Supplementary Information

Supplementary Information (XLSX 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Holgerson, M., Raymond, P. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geosci 9, 222–226 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing