Constraints from material properties on the dynamics and evolution of Earth’s core

Abstract

The Earth’s magnetic field is powered by energy supplied by the slow cooling and freezing of the liquid iron core. Efforts to determine the thermal and chemical history of the core have been hindered by poor knowledge of the properties of liquid iron alloys at the extreme pressures and temperatures that exist in the core. This obstacle is now being overcome by high-pressure experiments and advanced mineral physics computations. Using these approaches, updated transport properties for Fe–Si–O mixtures have been determined at core conditions, including electrical and thermal conductivities that are higher than previous estimates by a factor of two to three. Models of core evolution with these high conductivities suggest that the core is cooling much faster than previously thought. This implies that the solid inner core formed relatively recently (around half a billion years ago), and that early core temperatures were high enough to cause partial melting of the lowermost mantle. Estimates of core–mantle boundary heat flow suggest that the uppermost core is thermally stratified at the present day.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Comparison of thermal conductivity estimates (top) and adiabatic temperature profiles (bottom) from different studies.
Figure 2: Present-day core energy budget.
Figure 3: Core thermal evolution.
Figure 4: Dependence of core thermal history predictions on various material properties.

References

  1. 1

    Tarduno, J. et al. Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science 327, 1238–1240 (2010).

    Google Scholar 

  2. 2

    Jacobs, J. The Earth’s inner core. Nature 172, 297–300 (1953).

    Google Scholar 

  3. 3

    Birch, F. Elasticity and the constitution of Earth’s interior. J. Geophys. Res. 66, 227–286 (1952).

    Google Scholar 

  4. 4

    Braginsky, S. Structure of the F layer and reasons for convection in the Earth’s core. Sov. Phys. Dokl. 149, 8–10 (1963).

    Google Scholar 

  5. 5

    Lister, J. & Buffett, B. The strength and efficiency of thermal and compositional convection in the geodynamo. Phys. Earth Planet. Inter. 91, 17–30 (1995).

    Google Scholar 

  6. 6

    Stevenson, D., Spohn, T. & Schubert, G. Magnetism and thermal evolution of the terrestrial planets. Icarus 54, 466–489 (1983).

    Google Scholar 

  7. 7

    Mollett, S. Thermal and magnetic constraints on the cooling of the Earth. Geophys. J. R. Astron. Soc. 76, 653–666 (1984).

    Google Scholar 

  8. 8

    Labrosse, S., Poirier, J.-P. & Le Moeul, J.-L. The age of the inner core. Earth Planet. Sci. Lett. 190, 111–123 (2001).

    Google Scholar 

  9. 9

    Nimmo, F. in Treatise on Geophysics Vol. 9 (ed Schubert, G.) 217–241 (Elsevier, 2007).

    Google Scholar 

  10. 10

    Söderlind, P., Moriarty, J. A. & Wills, J. M. First-principles theory of iron up to Earth-core pressures: Structural, vibrational, and elastic properties. Phys. Rev. B 53, 14063 (1996).

    Google Scholar 

  11. 11

    Vočadlo, L., de Wijs, G. A., Kresse, G., Gillan, M. & Price, G. D. First principles calculations on crystalline and liquid iron at Earth’s core conditions. Faraday Discuss. 106, 205–218 (1997).

    Google Scholar 

  12. 12

    Mao, K., Wu, Y., Chen, L. C., Shu, J. F. & Jephcoat, A. P. Static compression of iron to 300 GPa and Fe0.8Ni0.2 alloy to 260 GPa: Implications for the composition of the core. J. Geophys. Res. 95, 21737–21742 (1990).

    Google Scholar 

  13. 13

    Dewaele, A. et al. Quasihydrostatic equation of state of iron above 2 Mbar. Phys. Rev. Lett. 97, 215504 (2006).

    Google Scholar 

  14. 14

    Alfè, D., Gillan, M. & Price, G. Temperature and composition of the Earth’s core. Contemp. Phys. 48, 63–80 (2007).

    Google Scholar 

  15. 15

    Alfè, D., Price, G. & Gillan, M. Thermodynamics of hexagonal close packed iron under Earth’s core conditions. Phys. Rev. B 64, 045123 (2001).

    Google Scholar 

  16. 16

    Brown, J. M. & McQueen, R. G. Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. J. Geophys. Res. 91, 7485–7494 (1986).

    Google Scholar 

  17. 17

    Alfè, D., Price, G. & Gillan, M. Iron under Earth’s core conditions: Liquid-state thermodynamics and high-pressure melting curve from ab initio calculations. Phys. Rev. B 65, 165118 (2002).

    Google Scholar 

  18. 18

    Brockhouse, B. N., Abou-Helal, H. E. & Hallman, E. D. Lattice vibrations in iron at 296 K. Solid State Commun. 5, 211–216 (1967).

    Google Scholar 

  19. 19

    Mao, H. K. et al. Phonon density of states of iron up to 153 gigapascals. Science 292, 914–916 (2001).

    Google Scholar 

  20. 20

    Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P. & Morard, G. Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction. Science 340, 464–466 (2013).

    Google Scholar 

  21. 21

    Alfè, D., Pozzo, M. & Desjarlais, M. Lattice electrical resistivity of magnetic bcc iron from first-principles calculations. Phys. Rev. B 85, 024102 (2012).

    Google Scholar 

  22. 22

    Weiss, R. J. & Marotta, A. S. Spin-dependence of the resistivity of magnetic metals. J. Phys. Chem. Solids 9, 302–308 (1959).

    Google Scholar 

  23. 23

    de Koker, N., Steinle-Neumann, G. & Vlček, V. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T and heat flux in Earth’s core. Proc. Natl Acad. Sci. USA 109, 4070–4073 (2012).

    Google Scholar 

  24. 24

    Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. Thermal and electrical conductivity of iron at Earth’s core conditions. Nature 485, 355–358 (2012).

    Google Scholar 

  25. 25

    Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. Transport properties for liquid silicon–oxygen–iron mixtures at Earth’s core conditions. Phys. Rev. B 87, 014110 (2013).

    Google Scholar 

  26. 26

    Gomi, H. et al. The high conductivity of iron and thermal evolution of the Earth’s core. Phys. Earth Planet. Inter. 224, 88–103 (2013).

    Google Scholar 

  27. 27

    Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. Thermal and electrical conductivity of solid iron and iron–silicon mixtures at Earth’s core conditions. Earth Planet. Sci. Lett. 393, 159–164 (2014).

    Google Scholar 

  28. 28

    Ohta, K. Measurements of electrical and thermal conductivity of iron under Earth’s core conditions AGU (Fall Meeting 2014) abstr. #MR21B-06 (2014)

  29. 29

    Stacey, F. & Anderson, O. Electrical and thermal conductivities of Fe–Ni–Si alloy under core conditions. Phys. Earth Planet. Inter. 124, 153–162 (2001).

    Google Scholar 

  30. 30

    Stacey, F. & Loper, D. A revised estimate of the conductivity of iron alloy at high pressure and implications for the core energy balance. Phys. Earth Planet. Inter. 161, 13–18 (2007).

    Google Scholar 

  31. 31

    Zhang, P., Cohen, R. & Haule, K. Effects of electron correlations on transport properties of iron at Earth’s core conditions. Nature 517, 605–607 (2015).

    Google Scholar 

  32. 32

    Pourovskii, L., Mravlje, J., Ferrero, M., Parcollet, O. & Abrikosov, I. Impact of electronic correlations on the equation of state and transport in ɛ-Fe. Phys. Rev. B 90, 155120 (2014).

    Google Scholar 

  33. 33

    Masters, G. & Gubbins, D. On the resolution of density within the Earth. Phys. Earth Planet. Inter. 140, 159–167 (2003).

    Google Scholar 

  34. 34

    Cao, A. M. & Romanowicz, B. Constraints on density and shear velocity contrasts at the inner core boundary. Geophys. J. Int. 157, 1146–1151 (2004).

    Google Scholar 

  35. 35

    Koper, K. D. & Dombrovskaya, M. Seismic properties of the inner core boundary from PKiKP/P amplitude ratios. Earth Planet. Sci. Lett. 237, 680–694 (2005).

    Google Scholar 

  36. 36

    Tkalčić, H., Kennett, B. & Cormier, V. On the inner–outer core density contrast from PKiKP/PcP amplitude ratios and uncertainties caused by seismic noise. Geophys. J. Int. 179, 425–443 (2009).

    Google Scholar 

  37. 37

    Souriau, A. in Treatise on Geophysics (eds Schubert, G., Romanowicz, B. & Dziewonski, A.) 655–693Vol. 1, Ch. 19, (Elsevier, 2007).

    Google Scholar 

  38. 38

    Gubbins, D., Masters, G. & Nimmo, F. A thermochemical boundary layer at the base of Earth’s outer core and independent estimate of core heat flux. Geophys. J. Int. 174, 1007–1018 (2008).

    Google Scholar 

  39. 39

    Alboussière, T., Deguen, R. & Melzani, M. Melting-induced stratification above the Earth’s inner core due to convective translation. Nature 466, 744–747 (2010).

    Google Scholar 

  40. 40

    Dziewonski, A. & Anderson, D. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Google Scholar 

  41. 41

    Nomura, R. et al. Low core–mantle boundary temperature inferred from the solidus of pyrolite. Science 343, 522–524 (2014).

    Google Scholar 

  42. 42

    Tateno, S., Hirose, K., Komabayashi, T., Ozawa, H. & Ohishi, Y. The structure of Fe–Ni alloy in Earth’s inner core. Geophys. Res. Lett. 39, L12305 (2012).

    Google Scholar 

  43. 43

    Martorell, B., Brodholt, J., Wood, I. G. & Vocadlo, L. The effect of nickel on the properties of iron at the conditions of the Earth’s inner core: Ab initio calculations of seismic wave velocities of Fe–Ni alloys. Earth Planet. Sci. Lett. 365, 143–151 (2013).

    Google Scholar 

  44. 44

    Hirose, K., Labrosse, S. & Hernlund, J. Compositional state of Earth’s core. Annu. Rev. Earth Planet. Sci. 41, 657–691 (2013).

    Google Scholar 

  45. 45

    Morard, G., Andrault, D., Antonangeli, D. & Bouchet, J. Properties of iron alloys under the Earth’s core conditions. C. R. Geosci. 346, 130–139 (2014).

    Google Scholar 

  46. 46

    Badro, J., Côté, A. & Brodholt, J. A seismologically consistent compositional model of Earth’s core. Proc. Natl Acad. Sci. USA 111, 7542–7545 (2014).

    Google Scholar 

  47. 47

    Jackson, J. et al. Melting of compressed iron by monitoring atomic dynamics. Earth Planet. Sci. Lett. 362, 143–150 (2013).

    Google Scholar 

  48. 48

    Nguyen, J. & Holmes, N. Melting of iron at the physical conditions of the Earth’s core. Nature 427, 339–342 (2004).

    Google Scholar 

  49. 49

    Alfè, D., Gillan, M. & Price, G. Ab initio chemical potentials of solid and liquid solutions and the chemistry of the Earth’s core. J. Chem. Phys. 116, 7127–7136 (2002).

    Google Scholar 

  50. 50

    Belonoshko, A., Ahuja, R. & Johansson, B. Quasi-ab initio molecular dynamic study of Fe melting. Phys. Rev. Lett. 84, 3638–3641 (2000).

    Google Scholar 

  51. 51

    Laio, A., Bernard, S., Chiarotti, G., Scandolo, S. & Tosatti, E. Physics of iron at Earth’s core conditions. Science 287, 1027–1030 (2000).

    Google Scholar 

  52. 52

    Alfè, D., Gillan, M. & Price, G. Complementary approaches to the ab initio calculation of melting properties. J. Chem. Phys. 116, 6170–6177 (2002).

    Google Scholar 

  53. 53

    Stacey, F. Thermodynamics of the Earth. Rep. Prog. Phys. 73, 046801 (2010).

    Google Scholar 

  54. 54

    Ichikawa, H., Tsuchiya, T. & Tange, Y. The P–V–T equation of state and thermodynamic properties of liquid iron. J. Geophys. Res. 119, 240–252 (2014).

    Google Scholar 

  55. 55

    Stacey, F. in Encyclopedia of Geomagnetism and Paleomagnetism (eds Gubbins, D. & Herrero-Bervera, E.) 91–94 (Springer, 2007).

    Google Scholar 

  56. 56

    Gubbins, D., Alfè, D., Masters, G., Price, G. & Gillan, M. Can the Earth’s dynamo run on heat alone? Geophys. J. Int. 155, 609–622 (2003).

    Google Scholar 

  57. 57

    Ichikawa, H. & Tsuchiya, T. Atomic transport property of Fe–O liquid alloys in the Earth’s outer core P, T condition. Phys. Earth Planet. Inter. http://dx.doi.org/10.1016/j.pepi.2015.03.006 (2015).

  58. 58

    Gubbins, D., Alfè, D., Masters, G., Price, G. & Gillan, M. Gross thermodynamics of two-component core convection. Geophys. J. Int. 157, 1407–1414 (2004).

    Google Scholar 

  59. 59

    Davies, C. Cooling history of Earth’s core with high thermal conductivity. Phys. Earth Planet. Inter. http://dx.doi.org/10.1016/j.pepi.2015.03.007 (2015).

  60. 60

    Roberts, P. & King, E. On the genesis of the Earth’s magnetism. Rep. Prog. Phys. 76, 096801 (2013).

    Google Scholar 

  61. 61

    de Wijs, G. et al. The viscosity of liquid iron at the physical conditions of the Earth’s core. Nature 392, 805–807 (1998).

    Google Scholar 

  62. 62

    Lay, T., Hernlund, J. & Buffett, B. Core–mantle boundary heat flow. Nature Geosci. 1, 25–32 (2009).

    Google Scholar 

  63. 63

    Nimmo, F. in Treatise on Geophysics 2nd edn, Vol. 9 (ed Schubert, G.) 27–55 (Elsevier, 2015).

    Google Scholar 

  64. 64

    Jackson, A. & Livermore, P. On Ohmic heating in the Earth’s core I: Nutation constraints. Geophys. J. Int. 177, 367–382 (2009).

    Google Scholar 

  65. 65

    Roberts, P., Jones, C. & Calderwood, A. in Earth’s Core and Lower Mantle (eds Jones, C., Soward, A. & Zhang, K.) 100–129 (SEDI 2000 7th Symp., Taylor & Francis, 2003).

    Google Scholar 

  66. 66

    Davies, J. & Davies, D. Earth’s surface heat flux. Solid Earth 1, 5–24 (2010).

    Google Scholar 

  67. 67

    Andrault, D. et al. Solidus and liquidus profiles of chondritic mantle: Implication for melting of the Earth across its history. Earth Planet. Sci. Lett. 304, 251–259 (2011).

    Google Scholar 

  68. 68

    Nakagawa, T. & Tackley, P. Influence of combined primordial layering and recycled MORB on the coupled thermal evolution of Earth’s mantle and core. Geochem. Geophys. Geosyst. 15, 619–633 (2014).

    Google Scholar 

  69. 69

    Driscoll, P. & Bercovici, D. On the thermal and magnetic histories of Earth and Venus: Influences of melting, radioactivity, and conductivity. Phys. Earth Planet. Inter. 236, 36–51 (2014).

    Google Scholar 

  70. 70

    Labrosse, S. Thermal evolution of the core with a high thermal conductivity. Phys. Earth Planet. Inter. http://dx.doi.org/10.1016/j.pepi.2015.02.002 (2015).

  71. 71

    Kennett, B., Engdahl, E. & Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124 (1995).

    Google Scholar 

  72. 72

    Braginsky, S. Dynamics of the stably stratified ocean at the top of the core. Phys. Earth Planet. Int. 111, 21–34 (1999).

    Google Scholar 

  73. 73

    Loper, D. Some thermal consequences of a gravitationally powered dynamo. J. Geophys. Res. 831, 5961–5970 (1978).

    Google Scholar 

  74. 74

    Helffrich, G. & Kaneshima, S. Causes and consequences of outer core stratification. Phys. Earth Planet. Int. 223, 2–7 (2013).

    Google Scholar 

  75. 75

    Buffett, B. & Seagle, C. Stratification of the top of the core due to chemical interactions with the mantle. J. Geophys. Res. 115, B04407 (2010).

    Google Scholar 

  76. 76

    Gubbins, D. & Davies, C. The stratified layer at the core–mantle boundary caused by barodiffusion of oxygen, sulphur and silicon. Phys. Earth Planet. Inter. 215, 21–28 (2013).

    Google Scholar 

  77. 77

    Moffatt, H. & Loper, D. The magnetostrophic rise of a buoyant parcel in the Earth’s core. Geophys. J. Int. 117, 394–402 (1994).

    Google Scholar 

  78. 78

    Buffett, B. Geomagnetic fluctuations reveal stable stratification at the top of the Earth’s core. Nature 507, 484–487 (2014).

    Google Scholar 

  79. 79

    Helffrich, G. & Kaneshima, S. Outer-core compositional stratification from observed core wave speed profiles. Nature 468, 807–809 (2010).

    Google Scholar 

  80. 80

    Gubbins, D., Alfè, D., Davies, C. & Pozzo, M. On core convection and the geodynamo: Effects of high electrical and thermal conductivity. Phys. Earth Planet. Inter. http://dx.doi.org/10.1016/j.pepi.2015.04.002 (2015).

  81. 81

    Nakagawa, T. & Tackley, P. Lateral variations in CMB heat flux and deep mantle seismic velocity caused by a thermal-chemical-phase boundary layer in 3D spherical convection. Earth Planet. Sci. Lett. 271, 348–358 (2007).

    Google Scholar 

  82. 82

    Olson, P. & Christensen, U. The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow. Geophys. J. Int. 151, 809–823 (2002).

    Google Scholar 

  83. 83

    Aubert, J., Amit, H., Hulot, G. & Olson, P. Thermochemical flows couple the Earth’s inner core growth to mantle heterogeneity. Nature 454, 758–761 (2008).

    Google Scholar 

  84. 84

    Gibbons, S. & Gubbins, D. Convection in the Earth’s core driven by lateral variations in core–mantle boundary heat flux. Geophys. J. Int. 142, 631–642 (2000).

    Google Scholar 

  85. 85

    Hollerbach, R. & Jones, C. Influence of the Earth’s inner core on geomagnetic fluctuations and reversals. Nature 365, 541–543 (1993).

    Google Scholar 

  86. 86

    Deguen, R. Structure and dynamics of Earth’s inner core. Earth Planet. Sci. Lett. 333–334, 211–225 (2012).

    Google Scholar 

  87. 87

    Labrosse, S. Thermal and compositional stratification of the inner core. C. R. Geosci. 346, 119–129 (2014).

    Google Scholar 

  88. 88

    Lasbleis, M. & Deguen, R. Building a regime diagram for Earth’s inner core. Phys. Earth Planet. Inter. http://dx.doi.org/10.1016/j.pepi.2015.02.001 (2015).

  89. 89

    Korenaga, J. Urey ratio and the structure and evolution of Earth’s mantle. Rev. Geophys. 46, 2007RG000241 (2008).

    Google Scholar 

  90. 90

    Lythgoe, K., Rudge, J., Neufeld, J. & Deuss, A. The feasibility of thermal and compositional convection in Earth’s inner core. Geophys. J. Int. 385, 764–782 (2015).

    Google Scholar 

  91. 91

    Monnereau, M., Calvet, M., Margerin, L. & Souriau, A. Lopsided growth of Earth’s inner core. Science 328, 1014–1017 (2010).

    Google Scholar 

  92. 92

    Aubert, J., Finlay, C. & Fournier, A. Bottom-up control of geomagnetic secular variation by the Earth’s inner core. Nature 502, 219–223 (2013).

    Google Scholar 

  93. 93

    Olson, P. & Deguen, R. Eccentricity of the geomagnetic dipole caused by lopsided inner core growth. Nature Geosci. 5, 565–569 (2012).

    Google Scholar 

  94. 94

    Nakagawa, T. & Tackley, P. Implications of high core thermal conductivity on Earth’s coupled mantle and core evolution. Geophys. Res. Lett. 40, 2652–2656 (2013).

    Google Scholar 

  95. 95

    Labrosse, S., Hernlund, J. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007).

    Google Scholar 

  96. 96

    Ziegler, L. B. & Stegman, D. R. Implications of a long-lived basal magma ocean in generating Earth’s ancient magnetic field. Geochem. Geophys. Geosyst. 14, 4735–4742 (2013).

    Google Scholar 

  97. 97

    Stevenson, D. How to keep a dynamo running in spite of high thermal conductivity AGU (Fall Meeting 2014) abstr. #DI11C-03 (2012).

  98. 98

    Amit, H. Can downwelling at the top of the Earth’s core be detected in the geomagnetic secular variation? Phys. Earth Planet. Inter. 229, 110–121 (2014).

    Google Scholar 

  99. 99

    Lesur, V., Whaler, K. & Wardinski, I. Are geomagnetic data consistent with stably stratified flow at the core–mantle boundary? Geophys. J. Int. 201, 929–946 (2015).

    Google Scholar 

  100. 100

    Buffet, B. & Matsui, H. A power spectrum for the geomagnetic dipole moment. Earth Planet. Sci. Lett. 411, 20–26 (2015).

    Google Scholar 

  101. 101

    Alfè, D., Gillan, M. & Price, G. Composition and temperature of the Earth’s core constrained by combining ab initio calculations and seismic data. Earth Planet. Sci. Lett. 195, 91–98 (2002).

    Google Scholar 

  102. 102

    Masters, T. in Encyclopedia of Geomagnetism and Paleomagnetism (eds Gubbins, D. & Herrero-Bervera, E.) 82–85 (Springer, 2007).

    Google Scholar 

  103. 103

    Parr, R. & Yang, W. Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, 1989).

    Google Scholar 

  104. 104

    Foulkes, W., Mitáš, L., Needs, R. & Rajagopal, G. Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73, 33–83 (2001).

    Google Scholar 

  105. 105

    Wang, Y. & Perdew, J. Correlation hole of the spin-polarized electron gas, with exact smallwave-vector and high-density scaling. Phys. Rev. B 44, 13298 (1991).

    Google Scholar 

  106. 106

    Frenkel, D. & Smit, B. Understanding Molecular Simulation (Academic, 1996).

    Google Scholar 

  107. 107

    Kubo, R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn 12, 570–586 (1957).

    Google Scholar 

  108. 108

    Greenwood, D. The Boltzmann equation in the theory of electrical conduction in metals. Proc. Phys. Soc. 71, 585–596 (1958).

    Google Scholar 

  109. 109

    Chester, G. & Thellung, A. The law of Wiedemann and Franz. Proc. Phys. Soc. 77, 1005–1013 (1961).

    Google Scholar 

  110. 110

    Mazevet, S., Torrent, M., Recoules, V. & Jollet, F. Calculations of the transport properties within the PAW formalism. High Energ. Dens. Phys. 6, 84–88 (2010).

    Google Scholar 

  111. 111

    Buffett, B., Huppert, H., Lister, J. & Woods, A. On the thermal evolution of the Earth’s core. J. Geophys. Res. 101, 7989–8006 (1996).

    Google Scholar 

  112. 112

    Lister, J. Expressions for the dissipation driven by convection in the Earth’s core. Phys. Earth Planet. Inter. 140, 145–158 (2003).

    Google Scholar 

  113. 113

    Stevenson, D. Limits on lateral density and velocity variations in the Earth’s outer core. Geophys. J. Int. 88, 311–319 (1987).

    Google Scholar 

Download references

Acknowledgements

C.D. is supported by Natural Environment Research Council (NERC) fellowships NE/H01571X/1 and NE/L011328/1 and a Green scholarship at IGPP. D.G. is supported by NSF grant EAR/1065597 and NERC grant NE/I0 12052/. M.P. is supported by NERC grants NE/H02462X/1 and NE/M000990/1. D.A. is supported by NERC grant NE/M000990/1. The authors thank T. Nakagawa, P. Driscoll, F. Nimmo and S. Labrosse for providing the model results that were used in Fig. 3.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher Davies.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 282 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davies, C., Pozzo, M., Gubbins, D. et al. Constraints from material properties on the dynamics and evolution of Earth’s core. Nature Geosci 8, 678–685 (2015). https://doi.org/10.1038/ngeo2492

Download citation

Further reading