Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments

Abstract

The depth of oxygen penetration into marine sediments differs considerably from one region to another1,2. In areas with high rates of microbial respiration, O2 penetrates only millimetres to centimetres into the sediments3, but active anaerobic microbial communities are present in sediments hundreds of metres or more below the sea floor4,5,6,7. In areas with low sedimentary respiration, O2 penetrates much deeper8,9,10,11,12 but the depth to which microbial communities persist was previously unknown9,10,13. The sediments underlying the South Pacific Gyre exhibit extremely low areal rates of respiration9. Here we show that, in this region, microbial cells and aerobic respiration persist through the entire sediment sequence to depths of at least 75 metres below sea floor. Based on the Redfield stoichiometry of dissolved O2 and nitrate, we suggest that net aerobic respiration in these sediments is coupled to oxidation of marine organic matter. We identify a relationship of O2 penetration depth to sedimentation rate and sediment thickness. Extrapolating this relationship, we suggest that oxygen and aerobic communities may occur throughout the entire sediment sequence in 15–44% of the Pacific and 9–37% of the global sea floor. Subduction of the sediment and basalt from these regions is a source of oxidized material to the mantle.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: IODP Expedition 329 site locations.
Figure 2: Sedimentary profiles of cell abundance and chemical concentrations11.
Figure 3: Net O2 reaction rates in sediment at SPG sites.
Figure 4: Regions where dissolved O2 and aerobic activity may occur throughout the sediment.

References

  1. Emerson, S., Fischer, K., Reimers, C. & Heggie, D. Organic carbon dynamics and preservation in deep-sea sediments. Deep-Sea Res. 32, 1–21 (1985).

    Article  Google Scholar 

  2. Jahnke, R. A., Heggie, D., Emerson, S. & Grundmanis, V. Pore waters of the central Pacific Ocean: Nutrient results. Earth Planet. Sci. Lett. 61, 233–256 (1982).

    Article  Google Scholar 

  3. Revsbech, N. P., Jørgensen, B. B. & Blackburn, T. H. Oxygen in the sea bottom measured with a microelectrode. Science 207, 1355–1356 (1980).

    Article  Google Scholar 

  4. Parkes, R. J. et al. Deep bacterial biosphere in Pacific Ocean sediments. Nature 371, 410–413 (1994).

    Article  Google Scholar 

  5. D’Hondt, S. et al. Distributions of microbial activities in deep subseafloor sediments. Science 306, 2216–2221 (2004).

    Article  Google Scholar 

  6. Inagaki, F. et al. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc. Natl Acad. Sci. USA 103, 2815–2820 (2006).

    Article  Google Scholar 

  7. Lomstein, B. A., Langerhuus, A. T., D’Hondt, S., Jørgensen, B. B. & Spivack, A. J. Spore abundance, microbial growth and necromass turnover in deep subseafloor sediment. Nature 484, 101–104 (2012).

    Article  Google Scholar 

  8. Murray, J. W. & Grundmanis, V. Oxygen consumption in pelagic marine sediments. Science 209, 1527–1530 (1980).

    Article  Google Scholar 

  9. D’Hondt, S. et al. Subseafloor sedimentary life in the South Pacific Gyre. Proc. Natl Acad. Sci. USA 106, 11651–11656 (2009).

    Article  Google Scholar 

  10. Røy, H. et al. Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science 336, 922–925 (2012).

    Article  Google Scholar 

  11. D’Hondt, S., Inagaki, F. & Alvarez Zarikian, C. A. Proc. IODP 329 (Integrated Ocean Drilling Program Management International, 2011).

    Google Scholar 

  12. Orcutt, B. N. et al. Oxygen consumption rates in subseafloor basaltic crust derived from a reaction transport model. Nature Commun. 4, 2539 (2013).

    Article  Google Scholar 

  13. Morita, R. Y. & Zobell, C. E. Occurrence of bacteria collected during the Mid-Pacific Expedition. Deep-Sea Res. 3, 66–73 (1955).

    Google Scholar 

  14. Jahnke, R. A. The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Glob. Biogeochem. Cycles 10, 71–88 (1996).

    Article  Google Scholar 

  15. Kallmeyer, J., Pockalny, R., Adhikari, R., Smith, D. C. & D’Hondt, S. Global distribution of subseafloor sedimentary biomass. Proc. Natl Acad. Sci. USA 109, 16213–16216 (2012).

    Article  Google Scholar 

  16. Hedges, J. I. et al. Sedimentary organic matter preservation: A test for selective degradation under oxic conditions. Am. J. Sci. 299, 529–555 (1999).

    Article  Google Scholar 

  17. Hensen, C. & Zabel, M. in Marine Geochemistry (eds Schulz, H. D. & Zabel, M.) 209–231 (Springer, 2000).

    Book  Google Scholar 

  18. Anderson, L. A. & Sarmiento, J. L. Global ocean phosphate and oxygen simulations. Glob. Biogeochem. Cycles 9, 621–636 (1995).

    Article  Google Scholar 

  19. Gieskes, J. M. & Boulegue, J. Interstitial water studies, Leg-92. Init. Rep. Deep Sea Drill. Proj. 92, 423–429 (1986).

    Google Scholar 

  20. Blair, C. C., D’Hondt, S., Spivack, A. J. & Kingsley, R. H. Potential of radiolytic hydrogen for microbial respiration in subseafloor sediments. Astrobiology 7, 951–970 (2007).

    Article  Google Scholar 

  21. D’ Hondt, S., Rutherford, S. & Spivack, A. J. Metabolic activity of subsurface life in deep-sea sediments. Science 295, 2067–2070 (2002).

    Article  Google Scholar 

  22. Middelburg, J. J. A simple rate model for organic matter decomposition in marine sediments. Geochim. Cosmochim. Acta 53, 1577–1581 (1989).

    Article  Google Scholar 

  23. Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17, 549–560 (1905); Cowper A. D. Investigations on the theory of Brownian movement (Dover Publications, 1926) (English transl.); http://go.nature.com/cmZZMs

    Article  Google Scholar 

  24. Heath, G. R., Moore, T. C. Jr & Dauphin, J. P. in The Fate of Fossil Fuel CO2 in the Oceans (eds Andersen, N. R. & Malahoff, A.) 605–625 (Plenum Press, 1977).

    Book  Google Scholar 

  25. Evans, K. A. The redox budget of subduction zones. Earth Sci. Rev. 113, 11–32 (2012).

    Article  Google Scholar 

  26. Kelley, K. A. & Cottrell, E. Water and the oxidation state of subduction zone magmas. Science 325, 605–607 (2009).

    Article  Google Scholar 

  27. Sleep, N. H., Bird, D. K. & Pope, E. C. Paleontology of Earth’s Mantle. Annu. Rev. Earth Planet. Sci. 40, 277–300 (2012).

    Article  Google Scholar 

  28. Wang, G., Spivack, A. J., Rutherford, S., Manor, U. & D’Hondt, S. Quantification of co-occurring reaction rates in deep subseafloor sediments. Geochim. Cosmochim. Acta 72, 3479–3488 (2008).

    Article  Google Scholar 

  29. Laske, G. & Masters, G. A. A global digital map of sediment thickness. EOS Trans. AGU 78, F483 (1997).

    Google Scholar 

  30. Divins, D. L. NGDC Total Sediment Thickness of the World’s Oceans and Marginal Seas (NOAA, 2008).

    Google Scholar 

Download references

Acknowledgements

This research would not have been possible without the dedicated effort of the drilling crew, ship’s crew and scientific staff of the Drillship JOIDES Resolution. We thank the shipboard scientific party, coring crew and ship’s crew of piston-coring expedition KN223 for dedicated effort that allowed us to test our global O2 model in the North Atlantic. We thank V. M. Fulfer and M. J. Hayden for assistance with data compilation. The project was undertaken as part of Integrated Ocean Drilling Program (IODP) Expedition 329. The expedition was funded by the US National Science Foundation (NSF); the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT); the European Consortium for Ocean Research Drilling; the Ministry of Science and Technology (People’s Republic of China); the Korea Institute of Geoscience and Mineral Resources; the Australian Research Council and the New Zealand Institute for Geological and Nuclear Sciences; and the Ministry of Earth Sciences (India). Post-expedition analyses were funded by the NSF Division of Ocean Sciences (grant 0939564 to S.D’H. and grant 1130735 to S.D’H. and A.J.S.), the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Science Research (no. 26251041, 24651018, 24687004, and GR102 in the NEXT Program: to F.I. and Y.M.) through the MEXT, and the Deutsche Forschungsgemeinschaft (grant to J.Kallmeyer). Expedition KN223 was funded by the NSF Division of Ocean Sciences (grant 1433150 to A.J.S., S.D’H. and R.P.). This is a contribution to the Deep Carbon Observatory (DCO). It is Center for Dark Energy Biosphere Investigations (C-DEBI) publication 254.

Author information

Authors and Affiliations

Authors

Contributions

S.D’H. and F.I. led IODP Expedition 329. C.A.Z. managed the Expedition 329 project. S.D’H., F.I., T.F., R.P. and A.J.S. designed the study. L.J.A., N.D., T.E., H.E., T.F., B.G., R.N.H., B.W.H., J-H.H., J.Kallmeyer, J.Kim, J.E.L., C.C.M., S.M., Y.M., R.W.M., R.P., J.S., T.S., F.S., C.E.S-D., D.C.S., A.J.S., B.O.S., Y.S., M.S., L.T., G.U., Y.T.Y., G-I.Z., X-H.Z. and W.Z. collected and analysed samples and data. S.D’H. wrote the manuscript with significant input from F.I., T.F., J.Kallmeyer, R.W.M., Y.M., R.P., J.S. and A.J.S.

Corresponding author

Correspondence to Steven D’Hondt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2322 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

D’Hondt, S., Inagaki, F., Zarikian, C. et al. Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments. Nature Geosci 8, 299–304 (2015). https://doi.org/10.1038/ngeo2387

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2387

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing