Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds


Changes in aerosol concentrations affect cloud albedo and Earth’s radiative balance1. Aerosol radiative forcing from pre-industrial time to the present due to the effect of atmospheric aerosol levels on the micro- and macrophysics of clouds bears the largest uncertainty among external influences on climate change1. Of all cloud forms, low-level marine clouds exert the largest impact on the planet’s albedo2. For example, a 6% increase in the albedo of global marine stratiform clouds could offset the warming that would result from a doubling of atmospheric CO2 concentrations3. Marine warm cloud properties are thought to depend on aerosol levels and large-scale dynamic or thermodynamic states4,5,6. Here we present a comprehensive analysis of multiple measurements from the A-Train constellation of Earth-observing satellites, to quantify the radiative forcing exerted by aerosols interacting with marine clouds. Specifically, we analyse observations of co-located aerosols and clouds over the world’s oceans for the period August 2006–April 2011, comprising over 7.3 million CloudSat single-layer marine warm cloud pixels. We find that thermodynamic conditions—that is, tropospheric stability and humidity in the free troposphere—and the state of precipitation act together to govern the cloud liquid water responses to the presence of aerosols and the strength of aerosol–cloud radiative forcing.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: LWP response to AI for cloud pixels under different environmental conditions.
Figure 2: Cloud property response to varying AI under different environments and non-raining/raining conditions.
Figure 3: Estimated intrinsic aerosol–cloud radiative forcing (as defined in equation (1)) by global marine warm clouds.


  1. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    Google Scholar 

  2. Wood, R. Stratocumulus clouds. Mon. Weath. Rev. 140, 2373–2423 (2012).

    Article  Google Scholar 

  3. Latham, J. et al. Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Phil. Trans. R. Soc. Lond. 366, 3969–3987 (2008).

    Article  Google Scholar 

  4. Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E. & Toon, O. B. The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature 432, 1014–1017 (2004).

    Article  Google Scholar 

  5. Wood, R. Cancellation of aerosol indirect effects in marine stratocumulus through cloud thinning. J. Atmos. Sci. 64, 2657–2669 (2007).

    Article  Google Scholar 

  6. Chen, Y-C. et al. Occurrence of lower cloud albedo in ship tracks. Atmos. Chem. Phys. 12, 8223–8235 (2012).

    Article  Google Scholar 

  7. Carslaw, K. S. et al. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503, 67–71 (2013).

    Article  Google Scholar 

  8. Twomey, S. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34, 1149–1152 (1977).

    Article  Google Scholar 

  9. Remer, L. A. et al. The MODIS algorithm, products, and validation. J. Atmos. Sci. 62, 947–973 (2005).

    Article  Google Scholar 

  10. Wilcox, E. M. Stratocumulus cloud thickening beneath layers of absorbing smoke aerosol. Atmos. Chem. Phys. 10, 11769–11777 (2010).

    Article  Google Scholar 

  11. Christensen, M. W., Carrio, G., Stephens, G. & Cotton, W. Radiative impacts of free-tropospheric clouds on the properties of marine stratocumulus. J. Atmos. Sci. 70, 3102–3118 (2013).

    Article  Google Scholar 

  12. Albrecht, B. Aerosols cloud microphysics, and fractional cloudiness. Science 245, 1227–1230 (1989).

    Article  Google Scholar 

  13. Small, J. D., Chuang, P. Y., Feingold, G. & Jiang, H. Can aerosol decrease cloud lifetime? Geophys. Res. Lett. 36, L16806 (2009).

    Article  Google Scholar 

  14. Bretherton, C. S., Blossey, P. N. & Uchida, J. Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett. 34, L03813 (2007).

    Article  Google Scholar 

  15. Matsui, T. et al. Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle. J. Geophys. Res. 111, D17204 (2006).

    Article  Google Scholar 

  16. Christensen, M. W. & Stephens, G. L. Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: 2. Impacts of haze on precipitating clouds. J. Geophys. Res. 117, D11203 (2012).

    Article  Google Scholar 

  17. Stevens, B. & Feingold, G. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461, 607–613 (2009).

    Article  Google Scholar 

  18. Coakley, J. A. Jr A study of climate sensitivity using a simple energy balance model. J. Atmos. Sci. 36, 260–269 (1979).

    Article  Google Scholar 

  19. Bellouin, N., Quaas, J., Morcrette, J-J. & Boucher, O. Estimates of aerosol radiative forcing from the MACC re-analysis. Atmos. Chem. Phys. 13, 2045–2062 (2013).

    Article  Google Scholar 

  20. Kaufman, Y. J. et al. Aerosol anthropogenic component estimated from satellite data. Geophys. Res. Lett. 32, L17804 (2005).

    Article  Google Scholar 

  21. Goren, T. & Rosenfeld, D. Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey components in marine stratocumulus. Atmos. Res. 138, 378–393 (2014).

    Article  Google Scholar 

  22. Quaas, J., Stevens, B., Stier, P. & Lohmann, U. Interpreting the cloud cover-aerosol optical depth relationship found in satellite data using a general circulation model. Atmos. Chem. Phys. 10, 6129–6135 (2010).

    Article  Google Scholar 

  23. Grandey, B. S., Stier, P. & Wagner, T. M. Investigating relationships between aerosol optical depth and cloud fraction using satellite, aerosol reanalysis and general circulation model data. Atmos. Chem. Phys. 13, 3177–3184 (2013).

    Article  Google Scholar 

  24. Wentz, F. J. & Spencer, R. W. SSMI rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci. 55, 1613–1627 (1998).

    Article  Google Scholar 

  25. Haynes, J. M. et al. Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res. 114, D00A22 (2009).

    Article  Google Scholar 

  26. Kato, S. et al. Relation of cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles. J. Geophys. Res. 115, D00H28 (2010).

    Article  Google Scholar 

  27. Coakley, J. A. Jr, Friedman, M. A. & Tahnk, W. R. Retrievals of cloud properties for partly cloudy imager pixels. J. Atmos. Ocean. Technol. 22, 3–17 (2005).

    Article  Google Scholar 

  28. Benedctow, A. et al. Validation Report of the MACC Reanalysis of Global Atmospheric Composition Period 2003–2011 (MACC-II project 2013)

  29. Lebsock, M. D., Stephens, G. L. & Kummerow, C. Multisensor satellite observations of aerosol effects on warm clouds. J. Geophys. Res. 113, D15205 (2008).

    Article  Google Scholar 

Download references


This work was supported by Office of Naval Research grant N00014-14-1-0097.

Author information

Authors and Affiliations



Y-C.C., M.W.C., G.L.S. and J.H.S. conceived the research; Y-C.C. and M.W.C. carried out the data analysis; Y-C.C., M.W.C., G.L.S. and J.H.S. wrote the paper.

Corresponding authors

Correspondence to Yi-Chun Chen or John H. Seinfeld.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3318 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, YC., Christensen, M., Stephens, G. et al. Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds. Nature Geosci 7, 643–646 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing