Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reorientation of the early lunar pole


Palaeomagnetic measurements suggest that an active core dynamo operated on the Moon from 4.2 to 3.56 billion years ago1,2,3. Since the Apollo era, many magnetic anomalies have been observed on the Moon. The magnetization of the lunar crust in some of these regions could preserve the signature of an early dipolar magnetic field generated by a core dynamo. Thus, the magnetic anomalies may yield information about the position of the palaeomagnetic pole during the time that the dynamo operated. Here we present a comprehensive survey of magnetic anomalies on the lunar surface using magnetometer data4,5 obtained by the Lunar Prospector and Kaguya lunar orbiters. We extract magnetization vectors from 24 magnetic anomalies using an iterative inversion method and derive the palaeomagnetic poles. We find that the north poles, as well as the antipodal south poles, cluster in two distinct locations: one near the present rotation axis and the other at mid-latitude. The clustering is consistent with a dipole-dominated magnetic field generated in the lunar core by a dynamo that was reversing, much like that of Earth. Furthermore, the two pole clusters imply that the Moon experienced a polar wander event during its ancient history due to the reorientation of the Moon with respect to its spin axis by 45°–60°.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Locations of study regions on the Moon.
Figure 2: Total field anomaly maps by observations and by the corresponding dipole source models.
Figure 3: Equal-area projection of the palaeomagnetic poles calculated from the selected models viewed from the south.


  1. Garrick-Bethell, I., Weiss, B. P., Shuster, D. L. & Buz, J. Early lunar magnetism. Science 323, 356–359 (2009).

    Article  Google Scholar 

  2. Shea, E. K. et al. A long-lived lunar core dynamo. Science 335, 453–456 (2012).

    Article  Google Scholar 

  3. Suavet, C. et al. Persistence and origin of the lunar core dynamo. Proc. Natl Acad. Sci. USA 110, 8453–8458 (2013).

    Article  Google Scholar 

  4. Richmond, N. C. & Hood, L. L. A preliminary global map of the vector lunar crustal magnetic field based on Lunar Prospector magnetometer data. J. Geophys. Res. 113, E02010 (2008).

    Article  Google Scholar 

  5. Tsunakawa, H. et al. Lunar magnetic field observation and initial global mapping of lunar magnetic anomalies by MAP-LMAG onboard SELENE (Kaguya). Space Sci. Rev. 154, 219–251 (2010).

    Article  Google Scholar 

  6. Fuller, M. & Cisowski, S. M. in Geomagnetism 2 (ed Jacobs, J. A.) 307–455 (Academic, 1987).

    Google Scholar 

  7. Hood, L. L., Mitchell, D. L., Lin, R. P., Acuna, M. H. & Binder, A. B. Initial measurements of the lunar induced magnetic moment using lunar prospector magnetometer data. Geophys. Res. Lett. 26, 2327–2330 (1999).

    Article  Google Scholar 

  8. Shimizu, H., Matsushima, M., Takahashi, F., Shibuya, H. & Tsunakawa, H. Constraint on the lunar core size from electromagnetic sounding based on magnetic field observations by an orbiting satellite. Icarus 222, 32–43 (2013).

    Article  Google Scholar 

  9. Weber, R. C., Lin, P-Y., Garnero, E. J., Williams, W. & Lognonné, P. Seismic detection of the lunar core. Science 331, 309–312 (2011).

    Article  Google Scholar 

  10. Stegman, D. R., Jellinek, A. M., Zatman, S. A., Baumgardner, J. R. & Richards, M. A. An early lunar core dynamo driven by thermochemical mantle convection. Nature 421, 143–146 (2003).

    Article  Google Scholar 

  11. Takahashi, F. & Tsunakawa, H. Thermal core–mantle coupling in an early lunar dynamo: Implications for a global magnetic field and magnetosphere of the early Moon. Geophys. Res. Lett. 36, L24202 (2009).

    Article  Google Scholar 

  12. Dwyer, C. A., Stevenson, D. J. & Nimmo, F. A Long-lived lunar dynamo driven by continuous mechanical stirring. Nature 479, 212–214 (2011).

    Article  Google Scholar 

  13. Le Bars, M., Wieczorek, M. A., Kratekin, Ö., Cébron, D. & Laneuville, M. An impact-driven dynamo for the early Moon. Nature 479, 215–218 (2011).

    Article  Google Scholar 

  14. Gattacceca, J., Lamali, A., Rochette, P., Boustie, M. & Berthe, L. The effects of explosive-driven shocks on the natural remanent magnetization and the magnetic properties of rocks. Phys. Earth Planet. Inter. 162, 85–98 (2007).

    Article  Google Scholar 

  15. Purucker, M. E., Head, J. W. III & Wilson, L. Magnetic signature of the lunar South Pole-Aitken Basin: Character, origin, and age. J. Geophys. Res. 117, E05001 (2012).

    Article  Google Scholar 

  16. Hood, L. L. Central magnetic anomalies of Nectarian-aged lunar impact basins: Probable evidence for an early core dynamo. Icarus 211, 1109–1128 (2011).

    Article  Google Scholar 

  17. Wieczorek, M. A., Weiss, B. P. & Stewart, S. T. An impactor origin for lunar magnetic anomalies. Science 335, 1212–1215 (2012).

    Article  Google Scholar 

  18. Hood, L. L. & Artemieva, N. A. Antipodal effects of lunar basin-forming impacts: Initial 3D simulations and comparisons with observations. Icarus 193, 485–502 (2008).

    Article  Google Scholar 

  19. Nicholas, J. B., Purucker, M. E. & Sabaka, T. J. Age spot or youthful marking: Origin of Reiner Gamma. Geophys. Res. Lett. 34, L02205 (2007).

    Article  Google Scholar 

  20. Hemingway, D. & Garrick-Bethell, I. Magnetic field direction and lunar swirl morphology: Insights from Airy and Reiner Gamma. J. Geophys. Res. 117, E10012 (2012).

    Article  Google Scholar 

  21. Merrill, R.T., McElhinny, M. W. & McFadden, P. L. The Magnetic Field of the Earth (Academic, 1998).

    Google Scholar 

  22. Runcorn, S. K. Lunar magnetism, polar displacements and primeval satellites in the Earth-Moon system. Nature 304, 589–596 (1983).

    Article  Google Scholar 

  23. Wilhelms, D. E. in The Geology of the Terrestrial Planets (ed Carr, M. H.) 107–205 (NASA SP-469, 1984).

    Google Scholar 

  24. Cournède, C., Gattacceca, J. & Rochette, P. Magnetic study of large Apollo samples: Possible evidence for an ancient centered dipolar field on the Moon. Earth Planet. Sci. Lett. 331,332, 31–42 (2012).

    Article  Google Scholar 

  25. Zuber, M. T., Smith, D. E., Lemoine, F. G. & Neumann, G. A. The shape and internal structure of the Moon from the Clementine mission. Science 266, 1839–1843 (1994).

    Article  Google Scholar 

  26. Zuber, M. T. et al. Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science 287, 1788–1793 (2000).

    Article  Google Scholar 

  27. Nimmo, F. & Matsuyama, I. Reorientation of icy satellites by impact basins. Geophys. Res. Lett. 34, L19203 (2007).

    Article  Google Scholar 

  28. Perron, J. T., Mitrovica, J. X., Manga, M., Matsuyama, I. & Richards, M. A. Evidence for an ancient martian ocean in the topography of deformed shorelines. Nature 447, 840–843 (2007).

    Article  Google Scholar 

  29. Ojakangas, G. W. & Stevenson, D. J. Polar wander of an ice shell on Europa. Icarus 81, 242–270 (1989).

    Article  Google Scholar 

  30. Fernandez, J. A. & Ip, W-H. Some dynamical aspects of the accretion of Uranus and Neptune: The exchange of orbital angular momentum with planetesimals. Icarus 58, 109–120 (1984).

    Article  Google Scholar 

Download references


We thank all of the members of the SELENE/Kaguya project team. This work was supported by a JSPS Grant-in-Aid for Scientific Research (Grant Number 25400445).

Author information

Authors and Affiliations



F.T. performed data analysis and manuscript preparation. H.T. was involved in project planning, data analysis and manuscript preparation. H. Shimizu, H. Shibuya and M.M. contributed to calibrating the Lunar Magnetometer onboard the Kaguya spacecraft. All authors contributed to discussion and conclusions in this study.

Corresponding author

Correspondence to Futoshi Takahashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4906 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takahashi, F., Tsunakawa, H., Shimizu, H. et al. Reorientation of the early lunar pole. Nature Geosci 7, 409–412 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing