Supervolcano eruptions driven by melt buoyancy in large silicic magma chambers

Abstract

Super-eruptions that dwarf all historical volcanic episodes in erupted volume1 and environmental impact2 are abundant in the geological record. Such eruptions of silica-rich magmas form large calderas. The mechanisms that trigger these super-eruptions are elusive because the processes occurring in conventional volcanic systems cannot simply be scaled up to the much larger magma chambers beneath supervolcanoes. Over-pressurization of the magma reservoir, caused by magma recharge, is a common trigger for smaller eruptions3, but is insufficient to generate eruptions from large supervolcano magma chambers4. Magma buoyancy can potentially create sufficient overpressure4, but the efficiency of this trigger mechanism has not been tested. Here we use synchrotron measurements of X-ray absorption5 to determine the density of silica-rich magmas at pressures and temperatures of up to 3.6 GPa and 1,950 K, respectively. We combine our results with existing measurements of silica-rich magma density at ambient pressures6,7 to show that magma buoyancy can generate an overpressure on the roof of a large supervolcano magma chamber that exceeds the critical overpressure of 10–40 MPa required to induce dyke propagation4, even when the magma is undersaturated in volatiles. We conclude that magma buoyancy alone is a viable mechanism to trigger a super-eruption, although magma recharge and mush rejuvenation8, volatile saturation9 or tectonic stress10 may have been important during specific eruptions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: X-ray absorbance through the sample assembly at 1.02 GPa and 1,735 K.
Figure 2: Equation of state of dry and hydrous rhyolitic liquids.
Figure 3: Supervolcano magma chamber overpressure.

References

  1. 1

    Mason, B. G., Pyle, D. M. & Oppenheimer, C. The size and frequency of the largest explosive eruptions on Earth. Bull. Volcanol. 66, 735–748 (2004).

    Article  Google Scholar 

  2. 2

    Self, S. & Blake, S. Consequences of explosive supereruptions. Elements 4, 41–46 (2008).

    Article  Google Scholar 

  3. 3

    Sparks, S. R. J. & Sigurdsson, H. Magma mixing: A mechanism for triggering acid explosive eruptions. Nature 267, 315–318 (1977).

    Article  Google Scholar 

  4. 4

    Jellinek, A. M. & DePaolo, D. J. A model for the origin of large silicic magma chambers: Precursors of caldera-forming eruptions. Bull. Volcanol. 65, 363–381 (2003).

    Article  Google Scholar 

  5. 5

    Sakamaki, T., Ohtani, E., Urakawa, S. & Suzuki, A. Measurements of hydrous peridotite magma density at high pressure using the X-ray absorption method. Earth Planet. Sci. Lett. 287, 293–297 (2009).

    Article  Google Scholar 

  6. 6

    Knoche, R., Webb, S. L. & Dingwell, D. B. A partial molar volume for B2O3 in haplogranitic melt. Canad. Mineral. 30, 561–569 (1992).

    Google Scholar 

  7. 7

    Ochs, F. A. & Lange, R. A. The density of hydrous magmatic liquids. Science 283, 1314–1317 (1999).

    Article  Google Scholar 

  8. 8

    Bachmann, O. & Bergantz, G. W. The magma reservoirs that feed supereruptions. Elements 4, 17–21 (2008).

    Article  Google Scholar 

  9. 9

    Blake, S. Volatile oversaturation during the evolution of silicic magma chambers as an eruption trigger. J. Geophys. Res. 89, 8237–8244 (1984).

    Article  Google Scholar 

  10. 10

    Allan, A. S. R., Wilson, C. J. N., Millet, M-A. & Wysoczanski, R. J. The invisible hand: Tectonic triggering and modulation of a rhyolitic supereruption. Geology 40, 563–566 (2012).

    Article  Google Scholar 

  11. 11

    Hansen, J., Ruedy, R. & Sato, M. Global surface air temperature in 1995: Return to pre-Pinatubo level. Geophys. Res. Lett. 23, 1665–1668 (1996).

    Article  Google Scholar 

  12. 12

    Jones, G. S., Gregory, J. M., Stott, P. A., Tett, S. F. B. & Thorpe, R. B. An AOGCM simulation of the climate response to a volcanic super-eruption. Clim. Dynam. 25, 725–738 (2005).

    Article  Google Scholar 

  13. 13

    Gregg, P. M., de Silva, S. L., Grosfils, E. B. & Parmigiani, J. P. Catastrophic caldera-forming eruptions: Thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth. J. Volcanol. Geotherm. Res. 241–242, 1–12 (2012).

    Article  Google Scholar 

  14. 14

    Agee, C. B. Static compression of hydrous silicate melt and the effect of water on planetary differentiation. Earth Planet. Sci. Lett. 265, 641–654 (2008).

    Article  Google Scholar 

  15. 15

    Matsukage, K. N., Jing, Z. & Karato, S. I. Density of hydrous silicate melt at the conditions of Earth’s deep upper mantle. Nature 438, 488–491 (2005).

    Article  Google Scholar 

  16. 16

    Sakamaki, T., Suzuki, A. & Ohtani, E. Stability of hydrous melt at the base of the Earth’s upper mantle. Nature 439, 192–194 (2006).

    Article  Google Scholar 

  17. 17

    Rivers, M. L. & Carmichael, I. S. E. Ultrasound studies of silicate melts. J. Geophys. Res. 92, 9247–9270 (1987).

    Article  Google Scholar 

  18. 18

    Mezouar, M. in High-Pressure Crystallography: From Fundamental Phenomena to Technological Applications (eds Boldyreva, E. & Dera, P.) 23–33 (Springer, 2010).

    Google Scholar 

  19. 19

    Lange, R. A. & Carmichael, I. S. E. Densities of Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2 liquids: New measurements and derived partial molar properties. Geochim. Cosmochim. Acta 51, 2931–2946 (1987).

    Article  Google Scholar 

  20. 20

    Agee, C. B. Compressibility of water in magma and the prediction of density crossovers in mantle differentiation. Phil. Trans. R. Soc. A 366, 4239–4252 (2008).

    Article  Google Scholar 

  21. 21

    Burnham, C. W. & Davis, N. F. Role of H2O in silicate melts. 1. PVT relations in the system NaAlSi3O8–H2O to 10 kilobars and 1000 °C. Am. J. Sci. 270, 54–79 (1971).

    Article  Google Scholar 

  22. 22

    Mookherjee, M., Stixrude, L. & Karki, B. Hydrous silicate melt at high pressure. Nature 452, 983–986 (2008).

    Article  Google Scholar 

  23. 23

    Pitzer, K. S. & Sterner, S. M. Equations of state valid continuously from zero to extreme pressures for H2O and CO2 . J. Chem. Phys. 101, 3111–3116 (1994).

    Article  Google Scholar 

  24. 24

    Malfait, W.J., Sanchez-Valle, C., Ardia, P., Médard, E. & Lerch, P. Compositional dependent compressibility of dissolved water in silicate glasses. Am. Mineral. 96, 1402–1409 (2011).

    Article  Google Scholar 

  25. 25

    Whitney, J. A. & Stormer, J. C. Mineralogy, Petrology, and magmatic conditions from the Fish Canyon Tuff, Central San Juan Volcanic Field, Colorado. J. Petrol. 26, 726–762 (1985).

    Article  Google Scholar 

  26. 26

    Bachmann, O. & Bergantz, G. W. On the origin of crystal-poor rhyolites: Extracted from batholitic crystal mushes. J. Petrol. 45, 1565–1582 (2004).

    Article  Google Scholar 

  27. 27

    Wallace, P. J., Andersen, A. T. & Davis, A. M. Quantification of pre-eruptive exsolved gas contents in silicic magmas. Nature 337, 612–616 (1995).

    Article  Google Scholar 

  28. 28

    Miller, D. S. & Smith, R. B. P and S velocity structure of the Yellowstone volcanic field from local earthquake and controlled-source tomography. J. Geophys. Res. 104, 15105–15121 (1999).

    Article  Google Scholar 

  29. 29

    Chu, R., Helmberger, D. V., Sun, D., Jackson, J. M. & Zhu, L. Mushy magma beneath Yellowstone. Geophys. Res. Lett. 37, L01306 (2010).

    Article  Google Scholar 

  30. 30

    Bachmann, O. & Bergantz, G.W. Rejuvenation of the Fish Canyon magma body: A window in the evolution of large-volume silicic magma systems. Geology 31, 789–792 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the ESRF for provision of the beam-time for these experiments and the SLS for the access to the IR facilities for the water analysis. We thank C. Yao for her help during data collection at the synchrotron and P. Ardia for providing the HGG0 and HGG5 sample. This research was supported by the Swiss National Science Foundation through grant 200021_130123 to C.S-V.

Author information

Affiliations

Authors

Contributions

W.J.M. and C.S-V. designed the study and W.J.M., R.S., C.S-V., S.P., J-P.P. and M.M. conducted the synchrotron experiments. W.J.M. and P.L. carried out the FTIR measurements and T.O. and E.N. provided the SIMS data. W.J.M. prepared the starting materials, conducted the electron microprobe analysis and carried out the data treatment and overpressure modelling. W.J.M and C.S-V. wrote the manuscript and all other authors commented on the manuscript.

Corresponding authors

Correspondence to Wim J. Malfait or Carmen Sanchez-Valle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1923 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Malfait, W., Seifert, R., Petitgirard, S. et al. Supervolcano eruptions driven by melt buoyancy in large silicic magma chambers. Nature Geosci 7, 122–125 (2014). https://doi.org/10.1038/ngeo2042

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing