Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Glacial discharge along the west Antarctic Peninsula during the Holocene

Abstract

The causes for rising temperatures along the Antarctic Peninsula during the late Holocene have been debated, particularly in light of instrumental records of warming over the past decades1. Suggested mechanisms range from upwelling of warm deep waters onto the continental shelf in response to variations in the westerly winds2, to an influence of El Niño–Southern Oscillation on sea surface temperatures3. Here, we present a record of Holocene glacial ice discharge, derived from the oxygen isotope composition of marine diatoms from Palmer Deep along the west Antarctic Peninsula continental margin. We assess atmospheric versus oceanic influences on glacial discharge at this location, using analyses of diatom geochemistry to reconstruct atmospherically forced glacial ice discharge and diatom assemblage4 ecology to investigate the oceanic environment. We show that two processes of atmospheric forcing—an increasing occurrence of La Niña events5 and rising levels of summer insolation—had a stronger influence during the late Holocene than oceanic processes driven by southern westerly winds and upwelling of upper Circumpolar Deepwater. Given that the evolution of El Niño–Southern Oscillation under global warming is uncertain6, its future impacts on the climatically sensitive system of the Antarctic Peninsula Ice Sheet remain to be established.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proxy records illustrating potential WAP ocean and climate forcing mechanisms.
Figure 2: Morlet wavelet analysis of ODP Site 1098 δ18Odiatom record.

Similar content being viewed by others

References

  1. Russell, A. & McGregor, G. R. Southern hemisphere atmospheric circulation: Impacts on Antarctic climate and reconstructions from Antarctic ice core data. Climatic Change 99, 155–192 (2010).

    Article  Google Scholar 

  2. Bentley, M. J. et al. Mechanisms of Holocene palaeoenvironmental change in the Antarctic Peninsula region. Holocene 19, 51–69 (2009).

    Article  Google Scholar 

  3. Shevenell, A. E., Ingalls, A. E., Domack, E. W. & Kelly, C. Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula. Nature 470, 250–254 (2011).

    Article  Google Scholar 

  4. Taylor, F. & Sjunneskog, C. Postglacial marine diatom record of the Palmer Deep, Antarctic Peninsula (ODP Leg 178, Site 1089), 2, diatom assemblages. Paleoceanography 17, 8001 (2002).

    Article  Google Scholar 

  5. Makou, M. C., Eglinton, T. I., Oppo, D. W. & Hughen, K. A. Postglacial changes in El Niño and La Niña behavior. Geology 38, 43–46 (2010).

    Article  Google Scholar 

  6. Yeh, S-W. et al. El Niño in a changing climate. Nature 461, 511–514 (2009).

    Article  Google Scholar 

  7. Meredith, M. P. & King, J. C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. 32, L19604 (2005).

    Google Scholar 

  8. Cook, A. J., Fox, A. J., Vaughan, D. G. & Ferrigno, J. G. Retreating glacier fronts on the Antarctic Penisula over the past half-century. Science 308, 541–544 (2005).

    Article  Google Scholar 

  9. Barker, P. F. et al. Proceedings of ODP, Initial Reports, 178 (CD-ROM) (Ocean Drilling Program, Texas A&M University, College Station, 1999).

  10. Heroy, D. C. & Anderson, J. B. Radiocarbon constraints on Antarctic Peninsula Ice Sheet retreat following the Last Glacial Maximum (LGM). Quat. Sci. Rev. 26, 3286–3297 (2007).

    Article  Google Scholar 

  11. Domack, E. et al. Chronology of the Palmer Deep site, Antarctic Peninsula: A Holocene paleoenvironmental reference for the circum-Antarctic. Holocene 11, 1–9 (2001).

    Article  Google Scholar 

  12. Kilfeather, A. A. et al. Ice-stream retreat and ice-shelf history in Marguerite Trough, Antarctic Penisula: Sedimentological and foraminiferal signatures. Geol. Soc. Am. Bull. 123, 997–1015 (2011).

    Article  Google Scholar 

  13. Milliken, K. T., Anderson, J. B., Wellner, J. S., Bohaty, S. M. & Manley, P. L. High-resolution Holocene climate record from Maxwell Bay, South Shetland Islands, Antarctica. Geol. Soc. Am. Bull. 121, 1711–1725 (2009).

    Article  Google Scholar 

  14. Debret, M. et al. Evidence from wavelet analysis for a mid-Holocene transition in global climate forcing. Quat. Sci. Rev. 28, 2675–2688 (2009).

    Article  Google Scholar 

  15. Lamy, F. et al. Holocene changes in the position and intensity of the southern westerly wind belt. Nature Geosci. 3, 695–699 (2010).

    Article  Google Scholar 

  16. Roberts, S. J. et al. The Holocene history of George VI Ice Shelf, Antarctic Peninsula from clast-provenance analysis of epishelf sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 259, 258–283 (2008).

    Article  Google Scholar 

  17. Moy, C. M., Seltzer, G. O. & Rodbell, D. T. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–165 (2002).

    Article  Google Scholar 

  18. Domack, E. W. in Proc. Ocean Drilling Program, Leg 178, Scientific Results (eds Barker, P. F., Camerlenghi, A., Acton, G. D. & Ramsay, A. T. S.) (Ocean Drilling Program, Texas A&M University, 2002).

    Google Scholar 

  19. Chazen, C. R., Altabet, M. A. & Herbert, T. D. Abrupt mid-Holocene onset of centennial-scale climate variability on the Peru-Chile Margin. Geophys. Res. Lett. 36, L18704 (2009).

    Article  Google Scholar 

  20. Conroy, J. L., Overpeck, J. T., Cole, J. E., Shanahan, T. M. & Steinitz-Kannan, M. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat. Sci. Rev. 27, 1166–1180 (2008).

    Article  Google Scholar 

  21. Willmott, V. et al. Holocene changes in Proboscia diatom productivity in shelf waters of the north-western Antarctic Peninsula. Ant. Sci. 22, 3–10 (2010).

    Article  Google Scholar 

  22. Leventer, A. et al. Productivity cycles of 200–300 years in the Antarctic Peninsula region: Understanding linkages among the sun, atmosphere, oceans, sea ice, and biota. Geol. Soc. Am. Bull. 108, 1626–1644 (1996).

    Article  Google Scholar 

  23. Khider, D., Stott, L. D., Emile-Geay, J., Thunell, R. & Hammond, D. E. Assessing El Niño Southern Oscillation variability during the last millennium. Paleoceanography 26, PA3222 (2011).

    Article  Google Scholar 

  24. Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

    Article  Google Scholar 

  25. Ding, Q., Steig, E. J., Battisti, D. J. & Küttel, M. Winter warming in West Antarctica caused by central tropical Pacific warming. Nature Geosci. 4, 398–403 (2011).

    Article  Google Scholar 

  26. Renwick, J. A. Persistent positive anomalies in the Southern Hemisphere circulation. Mon. Weath. Rev. 133, 977–988 (2005).

    Article  Google Scholar 

  27. Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    Article  Google Scholar 

  28. Meredith, M. P. et al. Changes in freshwater composition of the upper ocean west of the Antarctic Peninsula during the first decade of the 21st century. Prog. Oceanogr. 87, 127–143 (2010).

    Article  Google Scholar 

  29. Maddison, E. J., Pike, J., Leventer, A. & Domack, E. W. Deglacial seasonal and sub-seasonal diatom record from Palmer Deep, Antarctica. J. Quat. Sci. 20, 435–446 (2005).

    Article  Google Scholar 

  30. Swann, G. E. A., Pike, J., Snelling, A. & Leng, M. J. Seasonally resolved diatom δ18O records from the west Antarctic Peninsula over the last deglaciation. Earth Planet. Sci. Lett.http://dx.doi.org/10.1016/j.epsl.2012.12.016 (in the press).

Download references

Acknowledgements

We thank H. J. Sloane for assistance with the isotope analyses, I. M. Thomas for assistance with wavelet analysis, staff at the IODP Gulf Coast Core Repository for assistance with sampling ODP Site 1098 and S. Barker, C. Sjunneskog and M. Meredith for discussions. This research was supported by Natural Environment Research Council grants NE/G004811/1 awarded to J.P. and NE/G004137/1 awarded to M.J.L. and G.E.A.S.

Author information

Authors and Affiliations

Authors

Contributions

J.P., M.J.L. and G.E.A.S. conceived the project. A.M.S. and G.E.A.S. performed the δ18Odiatom analyses. J.P. performed the wavelet analysis and wrote the manuscript. All authors contributed to interpretations and commented on the manuscript.

Corresponding author

Correspondence to Jennifer Pike.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 515 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pike, J., Swann, G., Leng, M. et al. Glacial discharge along the west Antarctic Peninsula during the Holocene. Nature Geosci 6, 199–202 (2013). https://doi.org/10.1038/ngeo1703

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1703

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene