Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Volcanism in the Afar Rift sustained by decompression melting with minimal plume influence

Abstract

Continental breakup is caused by some combination of heating and stretching1,2. The Afar Rift system in Africa is an example of active continental rifting, where a mantle plume probably weakened the lithosphere through thermal erosion and magma infiltration. However, the location and degree of plume influence today are debated2,3. Here we use seismic S-to-P receiver functions to image the mantle structure beneath Afar. We identify the transition between the lithosphere and underlying asthenosphere at about 75 km depth beneath the flanks of the continental rift. However, this boundary is absent beneath the rift itself and we instead observe a strong increase in seismic velocities with depth, at about 75 km. We use geodynamic modelling to show that the velocity increase at this depth is best explained by decompression melting of the mantle in the absence of a strong thermal plume. So, although the absence of mantle lithosphere beneath the rift implies a plume may have once been active, we conclude that the influence of a thermal plume directly beneath Afar today is minimal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stations, bins and phase polarity at 75 km depth from simultaneous deconvolution.
Figure 2: Cross-sections from extended multitaper and migration.
Figure 3: Summary and waveform modelling.

Similar content being viewed by others

References

  1. Buck, W. R. in Rheology and Deformation of the Lithosphere at Continental Margins (eds Karner, G. D., Taylor, B., Driscoll, N. W. & Kohlstedt, D. L.) 1–30 (Columbia Univ. Press, 2004).

    Book  Google Scholar 

  2. White, R. & Mckenzie, D. Magmatism at rift zones—the generation of volcanic continental margins and flood basalts. J. Geophys. Res. 94, 7685–7729 (1989).

    Article  Google Scholar 

  3. Ebinger, C. J. & Sleep, N. H. Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature 395, 788–791 (1998).

    Article  Google Scholar 

  4. Prodehl, C. & Mechie, J. Crustal thinning in relationship to the evolution of the Afro–Arabian rift system—a review of seismic-refraction data. Tectonophysics 198, 311–327 (1991).

    Article  Google Scholar 

  5. Wolfenden, E., Ebinger, C., Yirgu, G., Deino, A. & Ayalew, D. Evolution of the northern Main Ethiopian Rift: Birth of a triple junction. Earth Planet. Sci. Lett. 224, 213–228 (2004).

    Article  Google Scholar 

  6. Weeraratne, D. S., Forsyth, D. W., Fischer, K. M. & Nyblade, A. A. Evidence for an upper mantle plume beneath the Tanzanian craton from Rayleigh wave tomography. J. Geophys. Res. 108, 2427–2444 (2003).

    Article  Google Scholar 

  7. Huismans, R. & Beaumont, C. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature 473, 74–78 (2011).

    Article  Google Scholar 

  8. Lekic, V., French, S. & Fischer, K. M. Lithospheric thinning beneath rifted regions of southern California. Science 334, 783–787 (2011).

    Article  Google Scholar 

  9. Hammond, J. O. S. et al. The nature of the crust beneath the Afar triple junction: Evidence from receiver functions. Geochem. Geophys. Geosyst. 12, Q12004 (2011).

    Article  Google Scholar 

  10. Kustowski, B., Ekstrom, G. & Dziewonski, A. M. Anisotropic shear-wave velocity structure of the Earth’s mantle: A global model. J. Geophys. Res. 113, B06306 (2008).

    Article  Google Scholar 

  11. Bastow, I. D., Nyblade, A. A., Stuart, G. W., Rooney, T. O. & Benoit, M. H. Upper mantle seismic structure beneath the Ethiopian hot spot: Rifting at the edge of the African low-velocity anomaly. Geochem. Geophys. Geosyst. 9, Q12022 (2008).

    Article  Google Scholar 

  12. Fishwick, S. Surface wave tomography imaging of the lithosphere–asthenosphere boundary beneath central and southern Africa? Lithos 120, 63–73 (2010).

    Article  Google Scholar 

  13. Kendall, J. M., Stuart, G. W., Ebinger, C. J., Bastow, I. D. & Keir, D. Magma-assisted rifting in Ethiopia. Nature 433, 146–148 (2005).

    Article  Google Scholar 

  14. Bostock, M. G. Mantle stratigraphy and evolution of the Slave province. J. Geophys. Res. 103, 21183–121200 (1998).

    Article  Google Scholar 

  15. Rychert, C. A., Rondenay, S. & Fischer, K. M. P-to-S and S-to-P imaging of a sharp lithosphere–asthenosphere boundary beneath eastern North America. J. Geophys. Res. 112, B08314 (2007).

    Article  Google Scholar 

  16. Helffrich, G. Extended-time multitaper frequency domain cross-correlation receiver-function estimation. Bull. Seismol. Soc. Am. 96, 344–347 (2006).

    Article  Google Scholar 

  17. Angus, D. A. et al. Stratigraphy of the Archean western Superior province from P- and S-wave receiver functions: Further evidence for tectonic accretion? Phys. Earth Planet. Inter. 177, 206–216 (2009).

    Article  Google Scholar 

  18. Dugda, M. T., Nyblade, A. A. & Julia, J. Thin lithosphere beneath the Ethiopian plateau revealed by a joint inversion of Rayleigh wave group velocities and receiver functions. J. Geophys. Res. 112, B08305 (2007).

    Article  Google Scholar 

  19. Eagles, G., Gloaguen, R. & Ebinger, C. Kinematics of the Danakil microplate. Earth Planet. Sci. Lett. 203, 607–620 (2002).

    Article  Google Scholar 

  20. Holtzman, B. K. & Kendall, J. M. Organized melt, seismic anisotropy, and plate boundary lubrication. Geochem. Geophys. Geosyst. 11, Q0AB06 (2010).

    Article  Google Scholar 

  21. Raddick, M. J., Parmentier, E. M. & Scheirer, D. S. Buoyant decompression melting: A possible mechanism for intraplate volcanism. J. Geophys. Res. 107, 2228–2242 (2002).

    Article  Google Scholar 

  22. Langmuir, C. H., Klein, E. & Plank, T. in Mantle Flow and Melt Generation at Mid-Ocean Ridges (eds Morgan, J. P., Blackman, D. K. & Sinton, J.) 183–280 (Geophys. Monogr. Ser. Vol. 71, AGU, 1992).

    Google Scholar 

  23. Schmeling, H. Dynamic models of continental rifting with melt generation. Tectonophysics 480, 33–47 (2010).

    Article  Google Scholar 

  24. Corti, G., van Wijk, J., Cloetingh, S. & Morley, C. K. Tectonic inheritance and continental rift architecture: Numerical and analogue models of the East African Rift system. Tectonics 26, 1–13 (2007).

    Article  Google Scholar 

  25. Rooney, T. O., Herzberg, C. & Bastow, I. D. Elevated mantle potential temperature beneath East Africa. Geology 40, 27–30 (2011).

    Article  Google Scholar 

  26. Silver, P. G., Russo, R. M. & Lithgow-Bertelloni, C. Coupling of South American and African plate motion and plate deformation. Science 279, 60–63 (1998).

    Article  Google Scholar 

  27. Furman, T. Geochemistry of East African Rift basalts: An overview. J. African Earth Sci. 48, 147–160 (2007).

    Article  Google Scholar 

  28. Toomey, D. R. et al. Asymmetric mantle dynamics in the MELT region of the East Pacific Rise. Earth Planet. Sci. Lett. 200, 287–295 (2002).

    Article  Google Scholar 

  29. Kendall, J. M. et al. Afar Volcanic Province within the East African Rift System Vol. 259 55–72 (The Geological Society of London, 2006).

    Google Scholar 

  30. Moucha, R. & Forte, A. M. Changes in African topography driven by mantle convection. Nature Geosci. 4, 707–712 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support for personnel and data acquisition and analysis from the Natural Environment Research Council, UK (NE/E005284/1, NE/G013438/1 and NE/E007414/1) and the National Science Foundation, USA (EAR-0635789). Additional data came from the Incorporated Research Institutions for Seismology Data Management Center. We thank everyone who helped with the field work. This work would not have been possible without the continued support and collaboration from the University of Addis Ababa, for which we are very appreciative.

Author information

Authors and Affiliations

Authors

Contributions

C.A.R. developed the seismic methodology, carried out imaging and modelling and wrote the paper. N.H. carried out geodynamic modelling and corresponding seismic predictions. N.H. and C.A.R. developed the interpretations and decompression melting hypotheses and made the figures. J.O.S.H. compiled data and provided advice on stations, Moho structure and migration. J.M.K. initiated the project. J.M.K., J.O.S.H., C.E., D.K., I.D.B. and M.B. provided advice on regional tectonics and geodynamics. All authors discussed results and commented on the manuscript.

Corresponding author

Correspondence to Catherine A. Rychert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 927 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rychert, C., Hammond, J., Harmon, N. et al. Volcanism in the Afar Rift sustained by decompression melting with minimal plume influence. Nature Geosci 5, 406–409 (2012). https://doi.org/10.1038/ngeo1455

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1455

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing