Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anisotropic uppermost mantle in young subducted slab underplating Central Mexico


Knowledge of the rate of plate-spreading at mid-ocean ridges is critical for estimating plate motions1 and the outward flux of heat from Earth’s interior2,3,4. Magnetic lineations5 and anisotropy—crystals that have aligned themselves with mantle flow—preserved in oceanic lithosphere provide a means for estimating plate-spreading rates up to 180 million years ago. However, reconstructions beyond this time are difficult because most older oceanic lithosphere has been subducted into the mantle. Here we use converted seismic waveforms to show that anisotropy is preserved in the subducted part of the Cocos Plate beneath Central Mexico. We observe strong P- and S-wave anisotropy in the topmost 2–6 km of the subducted oceanic mantle. The strength of the anisotropy is comparable to that measured in the surface portion of the Cocos Plate6. We also show that P-wave azimuthal anisotropy and plate-spreading rate at present-day mid-ocean ridges exhibit a linear relationship. On the basis of this relationship, we suggest that the subducted portion of the Cocos Plate formed at a half-spreading rate of about 8 cm yr−1 at the East Pacific Rise, about 15 million years ago. Our results imply that subducted oceanic lithosphere could preserve an archive of ancient plate-spreading rates on Earth.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Seismic probe of the subducted Cocos Plate beneath the Central Mexico subduction zone.
Figure 2: Observations and finite-difference modelling of local converted SP waves.
Figure 3: Stacked receiver function images and modelling.
Figure 4: P-wave azimuthal anisotropy versus half-spreading rates.


  1. DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophys. J. Int. 181, 1–80 (2010).

    Article  Google Scholar 

  2. Becker, T. W., Conrad, C. P., Buffet, B. & Muller, R. D. Past and present seafloor age distribution and temporal evolution of plate tectonic heat transport. Earth Planet. Sci. Lett. 278, 233–242 (2009).

    Article  Google Scholar 

  3. Labrosse, S. & Jaupart, C. Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics. Earth Planet. Sci. Lett. 260, 465–481 (2007).

    Article  Google Scholar 

  4. Korenaga, J. Archean Geodynamics and Environments Vol. 164, 7–32 (AGU Monograph Series, AGU, 2006).

    Book  Google Scholar 

  5. Muller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates and spreading symmetry of the world’s ocean crust. Geochem. Geophys. Geosys. 9, Q04006 (2008).

    Article  Google Scholar 

  6. Sndysman, W. E., Lewis, B. T. R. & McClain, J. Upper mantle velocities on the northern Cocos plate. Earth Planet. Sci. Lett. 28, 46–50 (1975).

    Article  Google Scholar 

  7. Toomey, D. R., Jousselin, D., Dunn, R. A., Wilcock, W. S. D. & Detrick, R. S. Skew of mantle upwelling beneath the East Pacific Rise governs segmentation. Nature 446, 409–414 (2007).

    Article  Google Scholar 

  8. Gaherty, J. B., Lizarralde, D. L., Collins, J., Hirth, G. & Kim, S. Mantle deformation during slow seafloor spreading constrained by observations of seismic anisotropy in the western Atlantic. Earth Planet. Sci. Lett. 228, 255–265 (2004).

    Article  Google Scholar 

  9. Shinohara, M. et al. Upper mantle and crustal seismic structure beneath the northwestern Pacific basin using a seafloor broadband seismometer and ocean bottom seismometers. Phys. Earth Planet. Inter. 170, 95–106 (2008).

    Article  Google Scholar 

  10. Oikawa, M., Kaneda, K. & Nishizawa, A. Seismic structures of the 154–160 Ma oceanic crust and uppermost mantle in the northwest Pacific Basin. Earth Planets Space 62, E13–E16 (2010).

    Google Scholar 

  11. Park, J. & Levin, V. Seismic anisotropy: Tracing plate dynamics in the mantle. Science 296, 485–489 (2002).

    Article  Google Scholar 

  12. Christensen, N. I. The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonites. Geophys. J. R. Astr. Soc. 76, 89–111 (1984).

    Article  Google Scholar 

  13. Ismail, W. B. & Mainprice, D. An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 296, 145–197 (1998).

    Article  Google Scholar 

  14. Calvert, A. J., Sawyer, E. W., Davis, W. J. & Ludden, J. N. Archaean subduction inferred from seismic images of a mantle suture in the Superior Province. Nature 375, 670–674 (1995).

    Article  Google Scholar 

  15. Cook, F., van der Velden, A. J., Hall, K. W. & Roberts, B. J. Frozen subduction in Canada’s northwest territories: Lithoprobe deep lithospheric reflection profiling of the western Canadian shield. Tectonics 18, 1–24 (1999).

    Article  Google Scholar 

  16. Van der Velden, A. J. & Cook, F. Relict subduction zones in Canada. J. Geophys. Res. 110, B08403 (2005).

    Article  Google Scholar 

  17. Bostock, M. G. Anisotropic upper-mantle stratigraphy and architecture of the Slave craton. Nature 390, 392–395 (1997).

    Article  Google Scholar 

  18. Mercier, J-P. et al. The teleseismic signature of fossil subduction: Northwestern Canada. J. Geophys. Res. 113, B04308 (2008).

    Article  Google Scholar 

  19. Masacchio, G., White, D. J., Asudeh, I. & Thomson, C. J. Lithospheric structure and composition of the Archaean western Superior Province from seismic refraction/wide-angle reflection and gravity modelling. J. Geophys. Res. 109, B03304 (2004).

    Google Scholar 

  20. Kim, Y., Clayton, R. W. & Jackson, J. M. Geometry and seismic properties of the subducting Cocos plate in central Mexico. J. Geophys. Res. 115, B06310 (2010).

    Google Scholar 

  21. Song, T-R. A. et al. Subducting slab ultra-slow velocity layer coincident with silent earthquake in southern Mexico. Science 324, 502–506 (2009).

    Article  Google Scholar 

  22. Helmberger, D. V. & Vidale, J. Modeling strong motions produced by earthquakes with two-dimensional numerical codes. Bull. Seismol. Soc. Am. 78, 109–121 (1988).

    Google Scholar 

  23. Shor, G. G. & Fisher, R. L. Middle America trench: Seismic refraction studies. Geol. Soc. Am. Bull. 72, 721–729 (1961).

    Article  Google Scholar 

  24. Levin, V. & Park, J. P-SH conversions in layered media with hexagonally symmetric anisotropy: A cookbook. Pure Apply. Geophys. 151, 669–697 (1998).

    Article  Google Scholar 

  25. Frederiksen, A. W. & Bostock, M. G. Modeling teleseismic waves in dipping anisotropic structures. Geophys. J. Int. 141, 401–402 (2000).

    Article  Google Scholar 

  26. Cassidy, J. F. Numerical experiments in broadband receiver function analysis. Bull. Seismol. Soc. Am. 82, 1453–1474 (1992).

    Google Scholar 

  27. Karato, S., Jung, H., Katayama, I. & Skemer, P. Geodynamic signatures of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annu. Rev. Earth Planet. Sci. 36, 59–95 (2008).

    Article  Google Scholar 

  28. Manea, V. & Gurnis, G. Subduction zone evolution and low viscosity wedges and channels. Earth Planet. Sci. Lett. 264, 22–45 (2007).

    Article  Google Scholar 

  29. Pardo, M. & Suarez, G. Shape of the subducted Rivera and Cocos plates in southern Mexico, seismic and tectonic implications. J. Geophys. Res. 100, 12357–12373 (1995).

    Article  Google Scholar 

  30. Currie, C. A., Hyndman, R. D. & Wang, K. Thermal models of the Mexico subduction zone: Implications for the megathrust seismogenic zone. J. Geophys. Res. 107, 2370 (2002).

    Article  Google Scholar 

Download references


We are grateful to the Incorporated Research Institutions for Seismology Data Management Center (IRIS-DMC) for making the data available. We thank A. Federiksen and M. Bostock for providing software for calculating receiver functions through dipping anisotropic layers, and H. Kawakatsu, P. Asimow and S. O’Reilly for the comments on lithospheric anisotropy, ophiolite assemblages and cratonic lithosphere formation during the early stage of this work. We acknowledge the MASE team for making the data available. We also thank D. Anderson and P. D. Asimow for help in reviewing an early draft of this paper. This study is supported by the Institute for Research on Earth Evolution (IFREE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and the Tectonic Observatory at Caltech.

Author information

Authors and Affiliations



T-R.A.S. initiated the project and carried out local waveform modelling. T-R.A.S. and Y.K. carried out receiver function analysis and modelling. T-R.A.S. and Y.K. wrote the manuscript.

Corresponding author

Correspondence to Teh-Ru Alex Song.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 8845 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Song, TR., Kim, Y. Anisotropic uppermost mantle in young subducted slab underplating Central Mexico. Nature Geosci 5, 55–59 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing