Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Boudinage of a stretching slablet implicated in earthquakes beneath the Hindu Kush

Abstract

As the fragments of Gondwana (Africa, Arabia, India and Australia) moved northward, arc-shaped belts with intervening basins formed in the Alpine–Himalayan mountain chain during and after collision. This was accompanied by subduction (or sinking) of the ancient Tethyan oceanic plate (or slab) into the underlying mantle. The arc-like shapes could in part be the end result of processes related to drips forming in the less-viscous mantle layer at the base of the Earth’s rigid outer shell and then falling into the deeper mantle. Alternatively, the arcs could have formed because slabs constituted of intervening small ocean basins were independently subducted during convergence, and have now disappeared. The subducting slabs tend to stretch, tear and eventually break off, leaving behind thin, vertical strips of colder material that can easily be mistaken for mantle drips. Previous work indicates the presence of such remnant material beneath the Hindu Kush region, close to the collision zone between the Indian and Eurasian continental plates. Here, we analyse a cluster of intermediate-depth earthquakes beneath this region and suggest the existence of an elongate boudin, a lens-shaped feature bounded by ductile faults or shear zones. Our data do not support mantle drip and instead offer a snapshot into the process of break-off, as a thin strip of vertically stretching slab tears free before descending deeper into the underlying mantle.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Structural elements map.
Figure 2: Cross-section of the Hindu Kush boudin.
Figure 3: Stereoplots of fault poles and slip lines.
Figure 4: Orientation groups in stereoplots.
Figure 5: Map of Hindu Kush earthquakes.
Figure 6: Interpretation of the Hindu Kush boudin.

References

  1. Channell, J. E. T. & Kozur, H. W. How many oceans? Meliata, Vardar and Pindos oceans in Mesozoic Alpine paleogeography. Geology 25, 183–186 (1997).

    Article  Google Scholar 

  2. Robertson, A. H. F. Contrasting modes of ophiolite emplacement in the Eastern Mediterranean region. Geol. Soc. Lond. Mem. 32, 235–261 (2006).

    Article  Google Scholar 

  3. Kovács, I. & Szabó, Cs. Middle Miocene volcanism in the vicinity of the Middle Hungarian zone: evidence for an inherited enriched mantle source. J. Geodyn. 45, 1–17 (2008).

    Article  Google Scholar 

  4. Rosenbaum, G. & Lister, G. S. The Western Alps from the Jurassic to Oligocene: spatio-temporal constraints and evolutionary reconstructions. Earth-Sci. Rev. 69, 281–306 (2005).

    Article  Google Scholar 

  5. Desmurs, L., Manatschal, G. & Bernoulli, D. The Steinmann Trinity revisited: Mantle exhumation and magmatism along an ocean-continent transition: The Platta nappe, eastern Switzerland. Geol. Soc. Lond. Special Publ. 187, 235–266 (2001).

    Article  Google Scholar 

  6. Weinberg, R. F., Regenauer-Lieb, K. & Rosenbaum, G. Mantle detachment faults and the breakup of cold continental lithosphere. Geology 35, 1035–1038 (2007).

    Article  Google Scholar 

  7. Lister, G. S., Forster, M. A. & Rawling, T. J. Episodicity during orogenesis. Geol. Soc. Lond. Special Publ. 184, 89–113 (2001).

    Article  Google Scholar 

  8. Forster, M. A. & Lister, G. S. Several distinct tectonometamorphic slices in the Cycladic eclogite-blueschist belt, Greece. Contrib. Mineral. Petrol. 150, 523–545 (2005).

    Article  Google Scholar 

  9. Carminati, E., Wortel, M. J. R., Spakman, W. & Sabadini, R. The role of slab detachment processes in the opening of the western–central Mediterranean basins: some geological and geophysical evidence. Earth Planet. Sci. Lett. 160, 651–665 (1998).

    Article  Google Scholar 

  10. Schellart, W. & Lister, G. S. Tectonic models for the formation of arc-shaped convergent zones and back-arc basins. Geol. Soc. Am. Special Paper 383, 237–258 (2004).

    Google Scholar 

  11. Rosenbaum, G. & Lister, G. S. Formation of arcuate orogenic belts in the western Mediterranean region. Geol. Soc. Am. Special Paper 383, 41–56 (2004).

    Google Scholar 

  12. Gutscher, M.-A. et al. Evidence for active subduction beneath Gibraltar. Geology 30, 1071–1074 (2002).

    Article  Google Scholar 

  13. Wortel, M. J. R. & Spakman, W. Subduction and slab detachment in the Mediterranean–Carpathian region. Science 290, 1910–1917 (2000).

    Article  Google Scholar 

  14. Houseman, G. A. & Molnar, P. Gravitational (Rayleigh–Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophys. J. Int. 128, 125–150 (1997).

    Article  Google Scholar 

  15. Kerr, R. A. Making mountains with lithospheric drips. Science 239, 978–979 (1988).

    Article  Google Scholar 

  16. Houseman, G. A. & Molnar, P. Mechanisms of lithospheric rejuvenation associated with continental orogeny. Continental reactivation and reworking. Geol. Soc. Lond. Special Publ. 184, 13–38 (2001).

    Article  Google Scholar 

  17. Platt, J. & Houseman, G. Evidence for active subduction beneath Gibraltar: Comment and Reply. Geology 31, 22 (2003).

    Article  Google Scholar 

  18. Platt, J. P., Whitehouse, M. J., Kelley, S. P., Carter, A. & Hollick, L. Simultaneous extensional exhumation across the Alboran Basin: Implications for the causes of late orogenic extension. Geology 31, 251–254 (2003).

    Article  Google Scholar 

  19. Platt, J. P. & Vissers, R. Extensional collapse of thickened continental lithosphere: A working hypothesis for the Alboran Sea and Gibraltar arc. Geology 17, 540–543 (1989).

    Article  Google Scholar 

  20. Zandt, G. et al. Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature 431, 41–46 (2004).

    Article  Google Scholar 

  21. Royden, L. H. Evolution of retreating subduction boundaries formed during continental collision. Tectonics 12, 629–638 (1993).

    Article  Google Scholar 

  22. Lonergan, L. & White, N. Origin of the Betic-Rif mountain belt. Tectonics 16, 504–522 (1997).

    Article  Google Scholar 

  23. Rosenbaum, G., Lister, G. S. & Duboz, C. Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. J. Virtual Explorer 8, 107–130 (2002).

    Google Scholar 

  24. Richards, S., Lister, G. S. & Kennett, B. L. N. A slab in depth: Three-dimensional geometry and evolution of the Indo-Australian plate. Geochem. Geophys. Geosyst. 8doi:10.1029/2007GC001657 (2007).

  25. Chouhan, R. K. S. Seismotectonics of Hindukush. Pure Appl. Geophys. 82, 108–118 (1970).

    Article  Google Scholar 

  26. Ram, A. & Yadav, L. Seismotectonics and analysis of earthquakes from the Hindukush region. Geophys. J. R. Astron. Soc. 68, 559–574 (1982).

    Article  Google Scholar 

  27. Roecker, S. W. et al. Seismicity and fault plane solutions of intermediate depth earthquakes in the Pamir-Hindu Kush region. J. Geophys. Res. 85, 1358–1364 (1980).

    Article  Google Scholar 

  28. Roecker, S. W. Velocity structure of the Pamir-Hindu Kush region: Possible evidence of subducted crust. J. Geophys. Res. 87, 945–959 (1982).

    Article  Google Scholar 

  29. Mellors, R. J., Pavlis, G. L., Hamburger, M. W., Al-Shukri, H. J. & Lukk, A. A. Evidence for a high-velocity slab associated with the Hindu Kush seismic zone. J. Geophys. Res. 100, 4067–4078 (1995).

    Article  Google Scholar 

  30. <http://neic.usgs.gov/>.

  31. Koulakov, I. & Sobolev, S. V. A tomographic image of Indian lithosphere break-off beneath the Pamir-Hindukush region. Geophys. J. Int. 164, 425–440 (2006).

    Article  Google Scholar 

  32. Khan, P. K. Stress state, seismicity and subduction geometries of the descending lithosphere below the Hindukush and Pamir. Gondwana Res. 6, 867–877 (2003).

    Article  Google Scholar 

  33. Fan, G., Ni, J. F. & Wallace, T. C. Active tectonics of the Pamirs and Karakoram. J. Geophys. Res. 99, 7131–7160 (1994).

    Article  Google Scholar 

  34. Negredo, A. M., Replumaz, A., Villaseñor, A. & Guillot, S. Modeling the evolution of continental subduction processes in the Pamir–Hindu Kush region. Earth Planet. Sci. Lett. 259, 212–225 (2007).

    Article  Google Scholar 

  35. <http://www.globalcmt.org/>.

  36. <http://rses.anu.edu.au/tectonics/equakes/>.

  37. Platt, J. P. & Vissers, R. L. M. Extensional structures in anisotropic rocks. J. Struct. Geol. 2, 397–410 (1980).

    Article  Google Scholar 

  38. Lacassin, R. Large-scale foliation boudinage in gneisses. J. Struct. Geol. 10, 643–647 (1988).

    Article  Google Scholar 

  39. Goscombe, B. D., Passchier, C. W. & Hand, M. Boudinage classification: End-member boudin types and modified boudin structures. J. Struct. Geol. 26, 739–763 (2004).

    Article  Google Scholar 

  40. Arslan, A., Passchier, C. W. & Koehn, D. Foliation boudinage. J. Struct. Geol. advance online publication doi:10.1016/j.jsg.2007.11.004 (19 November 2007).

  41. Forster, M. A. et al. in Mapping Geology in Italy (eds Pasquaré, G. & Venturini, C.) 279–286 (Servizio Geologico d’Italia, 2004).

    Google Scholar 

  42. Jiao, W., Silver, P. G., Fei, Y. & Prewitt, C. T. Do intermediate- and deep-focus earthquakes occur on preexisting weak zones? An examination of the Tonga subduction zone. J. Geophys. Res. 105, 28125–28138 (2000).

    Article  Google Scholar 

  43. Ranero, C. R., Villaseñor, A., Phipps Morgan, J. & Weinrebe, W. Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochem. Geophys. Geosyst. 6doi:10.1029/2005GC000997 (2005).

  44. Kawakatsu, H. Double seismic zone in Tonga. Nature 316, 53–55 (1985).

    Article  Google Scholar 

  45. Warren, L. M., Hughes, A. N. & Silver, P. G. Earthquake mechanics and deformation in the Tonga-Kermadec subduction zone from fault plane orientations of intermediate- and deep-focus earthquakes. J. Geophys. Res. 112doi:10.1029/2006JB004677 (2007).

  46. Saleeby, J. & Foster, Z. Topographic response to mantle lithosphere removal in the southern Sierra Nevada region, California. Geology 32, 245–248 (2004).

    Article  Google Scholar 

  47. Kelemen, P. B. & Hirth, G. A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle. Nature 446, 787–790 (2007).

    Article  Google Scholar 

  48. Regenauer-Lieb, K. & Yuen, D. A. Rapid conversion of elastic energy into plastic shear heating during incipient necking of the lithosphere. Geophys. Res. Lett. 25, 2737–2740 (1998).

    Article  Google Scholar 

  49. Kameyama, M., Yuen, D. A. & Karato, S.-I. Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone. Earth Planet. Sci. Lett. 168, 159–172 (1999).

    Article  Google Scholar 

  50. Regenauer-Lieb, K. & Yuen, D. A. Quasi-adiabatic instabilities associated with necking processes of an elasto-viscoplastic lithosphere. Phys. Earth Planet. Inter. 118, 89–102 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

Research supported by Australian Research Council Discovery Grant DP0343646 ‘Tectonic Reconstruction of the Evolution of the Alpine–Himalayan Orogenic Chain’. A. Barker is thanked for his work on the Vrancea slablet using eQuakes.

Program eQuakes written by GL, who accepts all responsibility for errors of interpretation occasioned by its use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon Lister.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lister, G., Kennett, B., Richards, S. et al. Boudinage of a stretching slablet implicated in earthquakes beneath the Hindu Kush. Nature Geosci 1, 196–201 (2008). https://doi.org/10.1038/ngeo132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing