Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction

Abstract

The Earth’s mantle contains non-radiogenic noble gas isotopes that imply transfer of noble gases from the atmosphere into the mantle through subduction. Hydrated serpentinite rocks within subducting oceanic lithosphere are recognized as key carriers of water and chlorine, but the pathways for noble gas subduction have been poorly constrained. Here we analyse the concentration of noble gas isotopes and halogens in rocks from the Ligurian Alps, Italy and the Betic Cordillera, Spain. These rocks and the fluid inclusions trapped within them preserve a record of serpentinite dehydration during progressively deeper stages of subduction. We find that the noble gas and halogen signature of serpentinites reflects that of sea water and sediment pore fluids. The fluids released become progressively depleted in noble gases and chlorine is subducted to greater depths than bromine or iodine. After complete breakdown of the serpentinites at mantle depths of around 70 km, the dehydrated rock residues still retain a seawater-derived noble gas signature and significant chlorine. We suggest that these samples are proxies for serpentinite dehydration in cold slabs at mantle depths of 200 km or greater. We conclude that atmospheric noble gases are readily incorporated into hydrous minerals formed close to the sea floor, and incompletely removed by subduction zone metamorphism. This implies that noble gases can be subducted to great depths in the Earth’s mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-pressure serpentinites and subduction zone PT paths.
Figure 2: High noble gas concentrations in serpentinites and their olivine–enstatite dehydration residues.
Figure 3: Non-radiogenic noble gas isotopes in serpentinite breakdown fluids, sediments and the mantle.
Figure 4: Halogen fractionation during serpentine breakdown.

Similar content being viewed by others

References

  1. Hofmann, A. W. Mantle geochemistry: The message from oceanic volcanism. Nature 385, 219–229 (1997).

    Article  Google Scholar 

  2. Rüpke, L. H., Morgan, J. P., Hort, M. & Connolly, J. A. D. Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett. 223, 17–34 (2004).

    Article  Google Scholar 

  3. Schmidt, M. W. & Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361–379 (1998).

    Article  Google Scholar 

  4. Green II, H. W., Chen, W-P. & Brudzinski, M. R. Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere. Nature 467, 828–831 (2010).

    Article  Google Scholar 

  5. Peacock, S. M. Fluid processes in subduction zones. Science 248, 329–337 (1990).

    Article  Google Scholar 

  6. Sarda, P., Moreira, M. & Staudacher, T. Argon–lead isotopic correlation in Mid-Atlantic Ridge basalts. Science 283, 666–668 (1999).

    Article  Google Scholar 

  7. Caffee, M. W. et al. Primordial noble cases from Earth’s mantle: Identification of a primitive volatile component. Science 285, 2115–2118 (1999).

    Article  Google Scholar 

  8. Holland, G. & Ballentine, C. J. Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441, 186–191 (2006).

    Article  Google Scholar 

  9. Ozima, M. & Podosek, F. A. Noble Gas Geochemistry 2nd edn (Cambridge Univ. Press, 2002).

    Google Scholar 

  10. Holland, G., Cassidy, M. & Ballentine, C. J. Meteorite Kr in Earth’s mantle suggests a late accretionary source for the atmosphere. Science 326, 1522–1525 (2009).

    Article  Google Scholar 

  11. Bostock, M. G., Hyndman, R. D., Rondenay, S. & Peacock, S. M. An inverted continental Moho and serpentinization of the forearc mantle. Nature 417, 536–538 (2002).

    Article  Google Scholar 

  12. Ranero, C. R., Phipps Morgan, J., McIntosh, K. & Reichert, C. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425, 367–373 (2003).

    Article  Google Scholar 

  13. Ulmer, P. & Trommsdorff, V. Serpentine stability to mantle depths and subduction-related magmatism. Science 268, 858–861 (1995).

    Article  Google Scholar 

  14. Sharp, Z. D. & Barnes, J. D. Water-soluble chlorides in massive seafloor serpentinites: A source of chloride in subduction zones. Earth Planet. Sci. Lett. 226, 243–254 (2004).

    Article  Google Scholar 

  15. Bonifacie, M. et al. Chlorine isotopic composition in seafloor serpentinites and high-pressure metaperidotites. Insights into oceanic serpentinization and subduction processes. Geochim. Cosmochim. Acta 72, 126–139 (2008).

    Article  Google Scholar 

  16. Matsuda, J. & Nagao, K. Noble-gas abundances in a deep-sea sediment core from eastern equatorial Pacific. Geochem. J. 20, 71–80 (1986).

    Article  Google Scholar 

  17. Moreira, M. et al. He and Ne isotopes in oceanic crust: Implications for noble gas recycling in the mantle. Earth Planet. Sci. Lett. 216, 635–643 (2003).

    Article  Google Scholar 

  18. Staudacher, T. & Allègre, C. J. Recycling of oceanic crust and sediments: The noble gas subduction barrier. Earth Planet. Sci. Lett. 89, 173–183 (1988).

    Article  Google Scholar 

  19. Scambelluri, M. et al. The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth Planet. Sci. Lett. 222, 217–234 (2004).

    Article  Google Scholar 

  20. Bose, K. & Navrotsky, A. Thermochemistry and phase equilibria of hydrous phases in the system MgO–SiO2–H2O: Implications for volatile transport to the mantle. J. Geophys. Res. 103, 9713–9719 (1998).

    Article  Google Scholar 

  21. Bach, W. & Frueh-Green, G. L. Alteration of the oceanic lithosphere and implications for seafloor processes. Elements 6, 173–178 (2010).

    Article  Google Scholar 

  22. Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003).

    Article  Google Scholar 

  23. Bromiley, G. D. & Pawley, A. R. The stability of antigorite in the systems MgO–SiO2–H2O(MSH) and MgO–Al2O3–SiO2–H2O (MASH): The effects of Al3+ substitution on high-pressure stability. Am. Miner. 88, 99–108 (2003).

    Article  Google Scholar 

  24. Kent, A. J. R. et al. Chlorine in submarine glasses from the Lau Basin: Seawater contamination and constraints on the composition of slab-derived fluids. Earth Planet. Sci. Lett. 202, 361–377 (2002).

    Article  Google Scholar 

  25. Sun, W. D. et al. Chlorine in submarine volcanic glasses from the eastern Manus basin. Geochim. Cosmochim. Acta 71, 1542–1552 (2007).

    Article  Google Scholar 

  26. Hermann, J., Müntener, O. & Scambelluri, M. The importance of serpentinite mylonites for subduction and exhumation of oceanic crust. Tectonophysics 327, 225–238 (2000).

    Article  Google Scholar 

  27. Scambelluri, M. et al. High salinity fluid inclusions formed from recycled seawater in deeply subducted alpine serpentinite. Earth Planet. Sci. Lett. 148, 485–499 (1997).

    Article  Google Scholar 

  28. Trommsdorff, V., Sanchez-Vizcaino, V. L., Gomez-Pugnaire, M. T. & Muntener, O. High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain. Contrib. Mineral. Petrol. 132, 139–148 (1998).

    Article  Google Scholar 

  29. Scambelluri, M. et al. Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth Planet. Sci. Lett. 192, 457–470 (2001).

    Article  Google Scholar 

  30. Fruh-Green, G. L., Scambelluri, M. & Vallis, F. O–H isotope ratios of high pressure ultramafic rocks: Implications for fluid sources and mobility in the subducted hydrous mantle. Contrib. Mineral. Petrol. 141, 145–159 (2001).

    Article  Google Scholar 

  31. Rubatto, D. & Scambelluri, M. U–Pb dating of magmatic zircon and metamorphic baddeleyite in the Ligurian eclogites (Voltri Massif, Western Alps). Contrib. Mineral. Petrol. 146, 341–355 (2003).

    Article  Google Scholar 

  32. Muramatsu, Y. et al. Halogen concentrations in pore waters and sediments of the Nankai Trough, Japan: Implications for the origin of gas hydrates. Appl. Geochem. 22, 534–556 (2007).

    Article  Google Scholar 

  33. Podosek, F. A., Honda, M. & Ozima, M. Sedimentary noble gases. Geochim. Cosmochim. Acta 44, 1875–1884 (1980).

    Article  Google Scholar 

  34. Moreira, M., Kunz, J. & Allegre, C. Rare gas systematics in popping rock: Isotopic and elemental compositions in the upper mantle. Science 279, 1178–1181 (1998).

    Article  Google Scholar 

  35. Sumino, H. et al. Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite. Earth Planet. Sci. Lett. 294, 163–172 (2010).

    Article  Google Scholar 

  36. Kohlstedt, D. L., Keppler, H. & Rubie, D. C. Solubility of water in the alpha, beta and gamma phases of (Mg,Fe)(2)SiO4 . Contrib. Mineral. Petrol. 123, 345–357 (1996).

    Article  Google Scholar 

  37. Patterson, D. B., Honda, M. & McDougall, I. Atmospheric contamination: A possible sorce for heavy noble gases in basalts from Loihi Seamount, Hawaii. Geophys. Res. Lett. 17, 705–708 (1990).

    Article  Google Scholar 

  38. Ballentine, C. J. & Barfod, D. N. The origin of air-like noble gases in MORB and OIB. Earth Planet. Sci. Lett. 180, 39–48 (2000).

    Article  Google Scholar 

  39. Graham, D. W. in Noble Gases in Geochemistry and Cosmochemistry Vol. 47 (eds Porcelli, D., Ballentine, C. J. & Wieler, R.) 245–317 (Mineralogical Society of America, 2002).

    Google Scholar 

  40. Hilton, D. R., Fischer, T. P. & Marty, B. in Noble Gases in Geochemistry and Cosmochemistry Vol. 47 (eds Porcelli, D., Ballentine, C. & Wieler, R.) 319–370 (Mineralogical Society of America, 2002).

    Book  Google Scholar 

  41. Ikeda, Y. et al. Noble gases in pillow basalt glasses from the northern Mariana Trough back-arc basin. Island Arc 7, 471–478 (1998).

    Article  Google Scholar 

  42. Bach, W. & Niedermann, S. Atmospheric noble gases in volcanic glasses from the southern Lau Basin: Origin from the subducting slab? Earth Planet. Sci. Lett. 160, 297–309 (1998).

    Article  Google Scholar 

  43. Trieloff, M. et al. The nature of pristine noble gases in mantle plumes. Science 288, 1036–1038 (2000).

    Article  Google Scholar 

  44. Raquin, A. & Moreira, M. Atmospheric 38Ar/36Ar in the mantle: Implications for the nature of the terrestrial parent bodies. Earth Planet. Sci. Lett. 287, 551–558 (2009).

    Article  Google Scholar 

  45. Ballentine, C. J., Marty, B., Lollar, B. S. & Cassidy, M. Neon isotopes constrain convection and volatile origin in the Earth’s mantle. Nature 433, 33–38 (2005).

    Article  Google Scholar 

  46. Yokochi, R. & Marty, B. A determination of the neon isotopic composition of the deep mantle. Earth Planet. Sci. Lett. 225, 77–88 (2004).

    Article  Google Scholar 

  47. Kendrick, M. A. & Phillips, D. New constraints on the release of noble gases during in vacuo crushing and application to scapolite Br–Cl–I and 40Ar/39Ar age determinations. Geochim. Cosmochim. Acta 73, 5673–5692 (2009).

    Article  Google Scholar 

  48. Kendrick, M. A., Honda, M., Oliver, N. H. S. & Phillips, D. The noble gas systematics of late-orogenic H2O–CO2 fluids, Mt Isa, Australia. Geochim. Cosmochim. Acta 75, 1428–1450 (2011).

    Article  Google Scholar 

  49. Jambon, A., Deruelle, B., Dreibus, G. & Pineau, F. Chlorine and bromine abundance in MORB: The contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle. Chem. Geol. 126, 101–117 (1995).

    Article  Google Scholar 

  50. Schilling, J. C., Unni, C. K. & Bender, M. L. Origin of chlorine and bromine in the oceans. Nature 273, 631–636 (1978).

    Article  Google Scholar 

Download references

Acknowledgements

S. Szczepanski and I. Yatsevich are thanked for technical assistance in the Melbourne and ANU noble gas laboratories. M.A.K. acknowledges discussions with several colleagues, including T. John, who supplied samples ET4B2 and ETCl74, A. Giuliani, J. Hermann and T. Pettke. M.A.K. is the recipient of an Australian Research Council QEII Fellowship (project number DP 0879451). M.S. acknowledges the Italian MIUR and the University of Genova for funding.

Author information

Authors and Affiliations

Authors

Contributions

M.A.K. was responsible for project conception and the majority of analyses; M.S. and M.H. made equal contributions in terms of sample selection and petrology (M.S.) and Ne analyses (M.H.). D.P. is director of the noble gas laboratory at the University of Melbourne. M.A.K. authored the manuscript with contributions from M.S., M.H. and D.P.

Corresponding author

Correspondence to Mark A. Kendrick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1133 kb)

Supplementary Information

Supplementary Information (XLS 568 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kendrick, M., Scambelluri, M., Honda, M. et al. High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nature Geosci 4, 807–812 (2011). https://doi.org/10.1038/ngeo1270

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1270

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing