Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid carbon sequestration at the termination of the Palaeocene–Eocene Thermal Maximum


The Palaeocene–Eocene Thermal Maximum (PETM), an approximately 170,000-year-long period of global warming about 56 million years ago, has been attributed to the release of thousands of petagrams of reduced carbon into the ocean, atmosphere and biosphere1,2. However, the fate of this excess carbon at the end of the event is poorly constrained: drawdown of atmospheric carbon dioxide has been attributed to an increase in the weathering of silicates or to increased rates of organic carbon burial1,3,4,5. Here we develop constraints on the rate of carbon drawdown based on rates of carbon isotope change in well-dated marine and terrestrial sediments spanning the event. We find that the rate of recovery is an order of magnitude more rapid than that expected for carbon drawdown by silicate weathering alone. Unless existing estimates of carbon stocks and cycling during this time are widely inaccurate, our results imply that more than 2,000 Pg of carbon were sequestered as organic carbon over 30,000–40,000 years at the end of the PETM. We suggest that the accelerated sequestration of organic carbon could reflect the regrowth of carbon stocks in the biosphere or shallow lithosphere that were released at the onset of the event.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Carbon isotope records spanning the PETM in marine and terrestrial sediments.
Figure 2: Model for δ13C recovery at the end of the PETM.
Figure 3: Carbon-cycle properties consistent with a half-life for the PETM CIE recovery of 16 kyr.


  1. 1

    Zeebe, R. E., Zachos, J. C. & Dickens, G. R. Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nature Geosci. 2, 576–580 (2009).

    Article  Google Scholar 

  2. 2

    K., Panchuk, Ridgwell, A. & Kump, L. R. Sedimentary response to Paleocene–Eocene thermal maximum carbon release: A model-data comparison. Geology 36, 315–318 (2008).

    Article  Google Scholar 

  3. 3

    Bains, S., Norris, R. D., Corfield, R. M. & Faul, K. L. Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407, 171–174 (2000).

    Article  Google Scholar 

  4. 4

    Dickens, G. R. in Western North Atlantic Palaeogene And Cretaceous Palaeoceanography Vol.9 (eds Kroon, K., Norris, R. D. & Klaus, A.) 293–305 (Geological Society Publishing House, 2001).

    Google Scholar 

  5. 5

    Dickens, G. R., Castillo, M. M. & Walker, J. C. G. A blast of gas in the latest Paleocene; simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25, 259–262 (1997).

    Article  Google Scholar 

  6. 6

    Sluijs, A., Bowen, G. J., Brinkhuis, H., Lourens, L. J. & Thomas, E. in Deep Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M., Haywood, A., Gregory, J. & Schmidt, D. N.) 267–293 (Geological Society of London, TMS Special Publication, 2007).

    Google Scholar 

  7. 7

    Bowen, G. J., Beerling, D. J., Koch, P. L., Zachos, J. C. & Quattlebaum, T. A humid climate state during the Palaeocene–Eocene thermal maximum. Nature 432, 495–499 (2004).

    Article  Google Scholar 

  8. 8

    McCarren, H., Thomas, E., Hasegawa, T., Rohl, U. & Zachos, J. C. Depth dependency of the Paleocene–Eocene carbon isotope excursion: Paired benthic and terrestrial biomarker records (Ocean Drilling Program Leg 208, Walvis Ridge). Geochem. Geophys. Geosyst. 9, Q10008 (2008).

    Article  Google Scholar 

  9. 9

    Farley, K. A. & Eltgroth, S. F. An alternative age model for the Paleocene–Eocene thermal maximum using extraterrestrial He-3. Earth Planet. Sci. Lett. 208, 135–148 (2003).

    Article  Google Scholar 

  10. 10

    Kelly, D. C., Nielsen, T. M. J., McCarren, H. K., Zachos, J. C. & Röhl, U. Spatiotemporal patterns of carbonate sedimentation in the South Atlantic: Implications for carbon cycling during the Paleocene–Eocene thermal maximum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 30–40 (2010).

    Article  Google Scholar 

  11. 11

    Bains, S., Corfield, R. M. & Norris, R. D. Mechanisms of climate warming at the end of the Paleocene. Science 285, 724–727 (1999).

    Article  Google Scholar 

  12. 12

    Aziz, H. A. et al. Astronomical climate control on paleosol stacking patterns in the upper Paleocene-lower Eocene Willwood Formation, Bighorn Basin, Wyoming. Geology 36, 531–534 (2008).

    Article  Google Scholar 

  13. 13

    Bowen, G. J. et al. in Paleocene–Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks Fork Basins, Wyoming (ed. Gingerich, P. D.) 73–88 (Univ. Michigan Museum of Paleontology, 2001).

    Google Scholar 

  14. 14

    Sundquist, E. T. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophysical Monograph Vol.32 (eds Sundquist, E. T. & Broecker, W. S.) 5–59 (American Geophysical Union, 1985).

    Google Scholar 

  15. 15

    Kelly, D. C., Zachos, J. C., Bralower, T. J. & Schellenberg, S. A. Enhanced terrestrial weathering/runoff and surface ocean carbonate production during the recovery stages of the Paleocene–Eocene thermal maximum. Paleoceanography 20, PA4023 (2005).

    Article  Google Scholar 

  16. 16

    Falkowski, P. et al. The global carbon cycle: A test of our knowledge of Earth as a system. Science 290, 291–296 (2000).

    Article  Google Scholar 

  17. 17

    Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation: An assessment and speculative synthesis. Mar. Chem. 49, 81–115 (1995).

    Article  Google Scholar 

  18. 18

    Demicco, R. V., Lowenstein, T. K. & Hardie, L. A. Atmospheric pCO2 since 60 Ma from records of seawater pH, calcium, and primary carbonate mineralogy. Geology 31, 793–796 (2003).

    Article  Google Scholar 

  19. 19

    Pearson, P. N. & Palmer, M. R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695–699 (2000).

    Article  Google Scholar 

  20. 20

    Zeebe, R. E. & Zachos, J. C. Reversed deep-sea carbonate ion basin gradient during Paleocene–Eocene thermal maximum. Paleoceanography 22, PA3201 (2007).

    Article  Google Scholar 

  21. 21

    Delaney, M. L. & Boyle, E. A. Tertiary Paleoceanic chemical variability: Unintended consequences of simple geochemical models. Paleoceanography 3, 137–156 (1988).

    Article  Google Scholar 

  22. 22

    Gibbs, M. T., Bluth, G. J. S., Fawcett, P. J. & Kump, L. R. Global chemical erosion over the last 250 my: Variations due to changes in paleogeography, paleoclimate, and paleogeology. Am. J. Sci. 299, 611–651 (1999).

    Article  Google Scholar 

  23. 23

    John, C. M. et al. North American continental margin records of the Paleocene–Eocene thermal maximum: Implications for global carbon and hydrological cycling. Paleoceanography 23, PA2217 (2008).

    Article  Google Scholar 

  24. 24

    Sluijs, A. et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441, 610–613 (2006).

    Article  Google Scholar 

  25. 25

    Bolle, M. P. et al. The Paleocene–Eocene transition in the marginal northeastern Tethys (Kazakhstan and Uzbekistan). Int. J. Earth Sci. 89, 390–414 (2000).

    Article  Google Scholar 

  26. 26

    Beerling, D. J. Increased terrestrial carbon storage across the Palaeocene–Eocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 161, 395–405 (2000).

    Article  Google Scholar 

  27. 27

    Buffett, B. & Archer, D. Global inventory of methane clathrate: Sensitivity to changes in the deep ocean. Earth Planet. Sci. Lett. 227, 185–199 (2004).

    Article  Google Scholar 

  28. 28

    Huber, M. A hotter greenhouse? Science 321, 353–354 (2008).

    Article  Google Scholar 

  29. 29

    Wing, S. L., Harrington, G. J., Bowen, G. J. & Koch, P. L. in Causes and Consequences of Globally Warm Climates in the Early Paleogene Vol.369 (eds Wing, S. L., Gingerich, P. D., S., Birger & Thomas, E.) 425–440 (Geological Society of America Special Paper, 2003).

    Google Scholar 

  30. 30

    Harrington, G. J. & Jaramillo, C. A. Paratropical floral extinction in the Late Paleocene-Early Eocene. J. Geol. Soc. Lond. 164, 323–332 (2007).

    Article  Google Scholar 

Download references


This work was supported by US National Science Foundation grants EAR-0628302 and OCE-0902882 to G.J.B. and EAR-0628719 to J.C.Z. We thank L. Kump, R. Zeebe and J. Dickens for comments that improved earlier versions of the manuscript. This is Purdue Climate Change Research Center paper 1040.

Author information




G.J.B. conceived and carried out the study. J.C.Z. advised on age models for marine records. Both authors wrote the manuscript.

Corresponding author

Correspondence to Gabriel J. Bowen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 454 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bowen, G., Zachos, J. Rapid carbon sequestration at the termination of the Palaeocene–Eocene Thermal Maximum. Nature Geosci 3, 866–869 (2010).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing