Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Otx5 regulates genes that show circadian expression in the zebrafish pineal complex

Abstract

The photoneuroendocrine system translates environmental light conditions into the circadian production of endocrine and neuroendocrine signals. Central to this process is the pineal organ, which has a conserved role in the cyclical synthesis and release of melatonin to influence sleep patterns and seasonal reproduction1. In lower vertebrates, the pineal organ contains photoreceptors whose activity entrains an endogenous circadian clock and regulates transcription in pinealocytes1. In mammals, pineal function is influenced by retinal photoreceptors that project to the suprachiasmatic nucleus—the site of the endogenous circadian clock. A multisynaptic pathway then relays information about circadian rhythmicity and photoperiod to the pineal organ1. The gene cone rod homeobox (crx), a member of the orthodenticle homeobox (otx) family, is thought to regulate pineal circadian activity. In the mouse, targeted inactivation of Crx causes a reduction in pineal gene expression and attenuated entrainment to light/dark cycles2. Here we show that crx and otx5 orthologs are expressed in both the pineal organ and the asymmetrically positioned parapineal of larval zebrafish. Circadian gene expression is unaffected by a reduction in Crx expression but is inhibited specifically by depletion of Otx5. Our results indicate that Otx5 rather than Crx regulates genes that show circadian expression in the zebrafish pineal complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identity of zebrafish orthodenticle-related homeobox 5 (Otx5).
Figure 2: Expression of otx5 in the pineal complex of wildtype (WT) and mutant larvae.
Figure 3: Mutant larvae show circadian-regulated gene expression.
Figure 4: Retinal but not pineal gene expression is reduced by Crx depletion.
Figure 5: Expression of circadian-regulated genes is lost in Otx5-depleted larvae.
Figure 6: Otx 5 is required for rhythmic gene expression throughout the circadian cycle.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Korf, H.W., Schomerus, C. & Stehle, J.H. The pineal organ, its hormone melatonin, and the photoneuroendocrine system. Adv. Anat. Embryol. Cell. Biol. 146, 1–100 (1998).

    Article  CAS  Google Scholar 

  2. Furukawa, T., Morrow, E.M., Li, T., Davis, F.C. & Cepko, C.L. Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nature Genet. 23, 466–470 (1999).

    Article  CAS  Google Scholar 

  3. Masai, I. et al. floating head and masterblind regulate neuronal patterning in the roof of the forebrain. Neuron 18, 43–57 (1997).

    Article  CAS  Google Scholar 

  4. Gothilf, Y. et al. Zebrafish serotonin N-acetyltransferase-2: marker for development of pineal photoreceptors and circadian clock function. Endocrinology 140, 4895–4903 (1999).

    Article  CAS  Google Scholar 

  5. Stenkamp, D.L., Cunningham, L.L., Raymond, P.A. & Gonzalez-Fernandez, F. Novel expression pattern of interphotoreceptor retinoid-binding protein (IRBP) in the adult and developing zebrafish retina and RPE. Mol. Vis. 4, 26 (1998).

    CAS  Google Scholar 

  6. Whitmore, D., Foulkes, N.S., Strahle, U. & Sassone-Corsi, P. Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nature Neurosci. 1, 701–707 (1998).

    Article  CAS  Google Scholar 

  7. Delaunay, F., Thisse, C., Marchand, O., Laudet, V. & Thisse, B. An inherited functional circadian clock in zebrafish embryos. Science 289, 297–300 (2000).

    Article  CAS  Google Scholar 

  8. Cermakian, N., Whitmore, D., Foulkes, N.S. & Sassone-Corsi, P. Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function. Proc. Natl Acad. Sci. USA 97, 4339–4344 (2000).

    Article  CAS  Google Scholar 

  9. Cahill, G.M. Circadian regulation of melatonin production in cultured zebrafish pineal and retina. Brain Res. 708, 177–181 (1996).

    Article  CAS  Google Scholar 

  10. Whitmore, D., Foulkes, N.S. & Sassone-Corsi, P. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 404, 87–91 (2000).

    Article  CAS  Google Scholar 

  11. Vignali, R. et al. Xotx5b, a new member of the Otx gene family, may be involved in anterior and eye development in Xenopus laevis. Mech. Dev. 96, 3–13 (2000).

    Article  CAS  Google Scholar 

  12. Kuroda, H., Hayata, T., Eisaki, A. & Asashima, M. Cloning a novel developmental regulating gene, Xotx5 : its potential role in anterior formation in Xenopus laevis. Dev. Growth Differ. 42, 87–93 (2000).

    Article  CAS  Google Scholar 

  13. Mori, H., Miyazaki, Y., Morita, T., Nitta, H. & Mishina, M. Different spatio-temporal expressions of three otx homeoprotein transcripts during zebrafish embryogenesis. Brain Res. Mol. Brain Res. 27, 221–231 (1994).

    Article  CAS  Google Scholar 

  14. Liu, Y., Shen, Y., Rest, J.S., Raymond, P.A. & Zack, D.J. Isolation and characterization of a zebrafish homologue of the cone rod homeobox gene. Invest. Ophthalmol. Vis. Sci. 42, 481–487 (2001).

    CAS  Google Scholar 

  15. Furukawa, T., Morrow, E.M. & Cepko, C.L. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91, 531–541 (1997).

    Article  CAS  Google Scholar 

  16. Borg, B., Ekstrom, P. & van Veen, T. The parapineal organ of teleosts. Acta Zoologica 64, 211–218 (1983).

    Article  Google Scholar 

  17. Concha, M.L., Burdine, R.D., Russell, C., Schier, A.F. & Wilson, S.W. A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron 28, 399–409 (2000).

    Article  CAS  Google Scholar 

  18. Bisgrove, B.W., Essner, J.J. & Yost, H.J. Multiple pathways in the midline regulate concordant brain, heart and gut left–right asymmetry. Development 127, 3567–3579 (2000).

    CAS  Google Scholar 

  19. Liang, J.O. et al. Asymmetric nodal signaling in the zebrafish diencephalon positions the pineal organ. Development 127, 5101–5112 (2000).

    CAS  Google Scholar 

  20. Nasevicius, A. & Ekker, S.C. Effective targeted gene 'knockdown' in zebrafish. Nature Genet. 26, 216–220 (2000).

    Article  CAS  Google Scholar 

  21. Chuang, J.C., Mathers, P.H. & Raymond, P.A. Expression of three Rx homeobox genes in embryonic and adult zebrafish. Mech. Dev. 84, 195–198 (1999).

    Article  CAS  Google Scholar 

  22. Bobola, N. et al. OTX2 homeodomain protein binds a DNA element necessary for interphotoreceptor retinoid binding protein gene expression. Mech. Dev. 82, 165–169 (1999).

    Article  CAS  Google Scholar 

  23. Li, X. et al. A pineal regulatory element (PIRE) mediates transactivation by the pineal/retina-specific transcription factor CRX. Proc. Natl Acad. Sci. USA 95, 1876–1881 (1998).

    Article  CAS  Google Scholar 

  24. Chen, S. et al. Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19, 1017–1030 (1997).

    Article  CAS  Google Scholar 

  25. Adelmant, G., Begue, A., Stehelin, D. & Laudet, V. A functional Rev-erb α responsive element located in the human Rev-erb α promoter mediates a repressing activity. Proc. Natl Acad. Sci. USA 93, 3553–3558 (1996).

    Article  CAS  Google Scholar 

  26. Sakamoto, K. et al. Molecular cloning of the cone-rod homeobox gene ( Crx ) from the rat and its temporal expression pattern in the retina under a daily light-dark cycle. Neurosci. Lett. 261, 101–104 (1999).

    Article  CAS  Google Scholar 

  27. Foulkes, N.S., Borjigin, J., Snyder, S.H. & Sassone-Corsi, P. Transcriptional control of circadian hormone synthesis via the CREM feedback loop. Proc. Natl Acad. Sci. USA 93, 14140–14145 (1996).

    Article  CAS  Google Scholar 

  28. Guillaumond, F. et al. Circadian binding activity of AP-1, a regulator of the arylalkylamine N- acetyltransferase gene in the rat pineal gland, depends on circadian Fra-2, c-Jun, and Jun-D expression and is regulated by the clock's zeitgebers. J. Neurochem. 75, 1398–1407 (2000).

    Article  CAS  Google Scholar 

  29. Hukriede, N.A. et al. Radiation hybrid mapping of the zebrafish genome. Proc. Natl Acad. Sci. USA 96, 9745–9750 (1999).

    Article  CAS  Google Scholar 

  30. Zhang, J., Talbot, W.S. & Schier, A.F. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92, 241–251 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Macurak, J. Prowell and L. Hantsoo for technical help. This work was supported by an American Cancer Society postdoctoral fellowship (J.T.G.), the Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Hôpital Universitaire de Strasbourg, Association pour la Recherche sur le Cancer, Ligue Nationale Contre le Cancer (C.T., B.T.), NIH grants (C.T., B.T., P.A.R.) and an NRSA fellowship (J.O.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marnie E. Halpern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamse, J., Shen, YC., Thisse, C. et al. Otx5 regulates genes that show circadian expression in the zebrafish pineal complex. Nat Genet 30, 117–121 (2002). https://doi.org/10.1038/ng793

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng793

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing