Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

JunB can substitute for Jun in mouse development and cell proliferation

Abstract

The Jun and JunB components of the AP-1 transcription factor are known to have antagonistic functions. Here we show, by a knock-in strategy and a transgenic complementation approach, that Junb can substitute for absence of Jun during mouse development. Junb can rescue both liver and cardiac defects in Jun-null mice in a manner dependent on gene dosage. JunB restores the expression of genes regulated by Jun/Fos, but not those regulated by Jun/ATF, thereby rescuing Jun-dependent defects in vivo as well as in primary fibroblasts and fetal hepatoblasts in vitro. Thus, the transcriptionally less active JunB has the potential to substitute for Jun, indicating that the spatial and temporal regulation of expression of the transcription factor AP-1 may be more important than the coding sequence of its components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of Junb knock-in mice.
Figure 2: Histological analysis of Junki/ki (ki/ki) and Jun−/−Junb-Tg (−/−Tg) mice.
Figure 3: JunB rescues the proliferation defects of Jun−/− primary fibroblasts.
Figure 4: JunB restores AP-1–mediated transcriptional regulation in Jun−/− primary fibroblasts.
Figure 5: JunB restores normal concentrations of p53 and affects cyclin D1 regulation at the post-transcriptional level in Jun−/− primary fibroblasts.
Figure 6: JunB rescues the proliferation and apoptosis defects of Jun−/− fetal liver hepatoblasts.

Similar content being viewed by others

References

  1. Wagner, E.F. (ed.) AP-1. Oncogene 20, 2333–2498 (2001).

    Article  Google Scholar 

  2. Jochum, W., Passegué, E. & Wagner, E.F. AP-1 in mouse development and tumorigenesis. Oncogene 20, 2401–2412 (2001).

    Article  CAS  Google Scholar 

  3. Hilberg, F., Aguzzi, A., Howells, N. & Wagner, E.F. c-jun is essential for normal mouse development and hepatogenesis. Nature 365, 179–181 (1993).

    Article  CAS  Google Scholar 

  4. Johnson, R.S., Van Lingen, B., Papaioannou, V.E. & Spiegelman, B.M. A null mutation at the c-jun locus causes embryonic lethality and retarded cell growth in culture. Genes Dev. 7, 1309–1317 (1993).

    Article  CAS  Google Scholar 

  5. Eferl, R. et al. Functions of c-Jun in liver and heart development. J. Cell Biol. 145, 1049–1061 (1999).

    Article  CAS  Google Scholar 

  6. Schorpp-Kistner, M., Wang, Z.-Q., Angel, P. & Wagner, E.F. JunB is essential for mammalian placentation. EMBO J. 18, 934–948 (1999).

    Article  CAS  Google Scholar 

  7. Grigoriadis, A.E., Schellander, K., Wang, Z.Q. & Wagner, E.F. Osteoblasts are target cells for transformation in c-fos transgenic mice. J. Cell Biol. 122, 685–701 (1993).

    Article  CAS  Google Scholar 

  8. Schorpp, M. et al. The human ubiquitin C promoter directs high ubiquitous expression of transgenes in mice. Nucleic Acids Res. 24, 1787–1788 (1996).

    Article  CAS  Google Scholar 

  9. Li, B., Tournier, C., Davis, R.J. & Flavell, R.A. Regulation of IL-4 expression by the transcription factor JunB during T helper cell differentiation. EMBO J. 18, 420–432 (1999).

    Article  Google Scholar 

  10. Mechta-Grigoriou, F., Gerald, D. & Yaniv, M. The mammalian Jun proteins: redundancy and specificity. Oncogene 20, 2378–2389 (2001).

    Article  CAS  Google Scholar 

  11. Kockel, L., Homsy, J.G. & Bohmann, D. Drosophila AP-1: lessons from an invertebrate. Oncogene 20, 2347–2364 (2001).

    Article  CAS  Google Scholar 

  12. Deng, T. & Karin, M. Jun B differs from c-Jun in its DNA-binding and dimerization domains, and represses c-Jun by formation of inactive heterodimers. Genes Dev. 7, 479–490 (1993).

    Article  CAS  Google Scholar 

  13. Chiu, R., Angel, P. & Karin, M. Jun-B differs in its biological properties from, and is a negative regulator of, c-Jun. Cell 59, 979–986 (1989).

    Article  CAS  Google Scholar 

  14. Hsu, J.C., Cressman, D.E. & Taub, R. Promoter-specific transactivation and inhibition mediated by JunB. Cancer Res. 53, 3789–3794 (1993).

    CAS  PubMed  Google Scholar 

  15. Passegué, E., Jochum, W., Schorpp-Kistner, M., Möhle-Steinlein, U. & Wagner, E.F. Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking JunB expression in the myeloid lineage. Cell 104, 21–32 (2001).

    Article  Google Scholar 

  16. Dérijard, B. et al. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025–1037 (1994).

    Article  Google Scholar 

  17. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).

    Article  CAS  Google Scholar 

  18. Gupta, S. et al. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 15, 2760–2770 (1996).

    Article  CAS  Google Scholar 

  19. Benbrook, D.M. & Jones, N.C. Heterodimer formation between CREB and Jun proteins. Oncogene 5, 295–302 (1991).

    Google Scholar 

  20. van Dam, H. & Castelazzi, M. Distinct roles of Jun:Fos and Jun:ATF dimers in oncogenesis. Oncogene 20, 2453–2464 (2001).

    Article  CAS  Google Scholar 

  21. Schreiber, M. et al. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev. 13, 607–619 (1999).

    Article  CAS  Google Scholar 

  22. Shaulian, E. et al. The mammalian UV response: c-Jun induction is required for exit from p53-imposed growth arrest. Cell 103, 897–907 (2000).

    Article  CAS  Google Scholar 

  23. Bakiri, L., Lallemand, D., Bossy-Wetzel, E. & Yaniv, M. Cell cycle-dependent variations in c-Jun and JunB phosphorylation: a role in the control of cyclin D1 expression. EMBO J. 19, 2056–2068 (2000).

    Article  CAS  Google Scholar 

  24. Wisdom, R., Johnson, R.S. & Moore, C. C-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J. 18, 188–197 (1999).

    Article  CAS  Google Scholar 

  25. Passegué, E. & Wagner, E.F. JunB suppresses cell proliferation by transcriptional activation of p16INK4a expression. EMBO J. 19, 2969–2979 (2000).

    Article  Google Scholar 

  26. Szabowski, A. et al. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin. Cell 103, 745–755 (2000).

    Article  CAS  Google Scholar 

  27. Behrens, A., Sibilia, M. & Wagner, E.F. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nature Genet. 21, 326–329 (1999).

    Article  CAS  Google Scholar 

  28. Srivastava, D. & Olson, E.N. A genetic blueprint for cardiac development. Nature 407, 221–226 (2000).

    Article  CAS  Google Scholar 

  29. van Dam, H. et al. Autocrine growth and anchorage independence: two complementing Jun-controlled genetic programs of cellular transformation. Genes Dev. 12, 1227–1239 (1998).

    Article  CAS  Google Scholar 

  30. Bergers, G., Graninger, P., Braselmann, S., Wrighton, C. & Busslinger, M. Transcriptional activation of the fra-1 gene by AP-1 is mediated by regulatory sequences in the first intron. Mol. Cell. Biol. 15, 3748–3758 (1995).

    Article  CAS  Google Scholar 

  31. Cirillo, G. et al. Role of distinct mitogen-activated protein kinase pathways and cooperation between Ets-2, ATF-2, and Jun family members in human urokinase-type plasminogen activator gene induction by interleukin-1 and tetradecanoyl phorbol acetate. Mol. Cell. Biol. 9, 6240–6252 (1999).

    Article  Google Scholar 

  32. Fleischmann, A. et al. Fra-1 replaces c-Fos-dependent functions in mice. Genes Dev. 14, 2695–2700 (2000).

    Article  CAS  Google Scholar 

  33. Kitabayashi, I. et al. Two cis-regulatory elements that mediate different signaling pathways for serum-dependent activation of the JunB gene. J. Biol. Chem. 268, 14482–14489 (1993).

    CAS  PubMed  Google Scholar 

  34. Kolbus, A. et al. c-Jun-dependent CD95-L expression is a rate-limiting step in the induction of apoptosis by alkylating agents. Mol. Cell. Biol. 20, 575–582 (2000).

    Article  CAS  Google Scholar 

  35. Brewer, J.W, Hendershot, L.M, Sherr, C.J. & Diehl, J.A. Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression. Proc. Natl Acad. Sci. USA 96, 8505–8510 (1999).

    Article  CAS  Google Scholar 

  36. Hashemolhosseini, S. et al. Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. J. Biol. Chem. 273, 14424–14429 (1998).

    Article  CAS  Google Scholar 

  37. Lin, S. et al. Down-regulation of cyclin D1 expression by prostaglandin A2 is mediated by enhanced cyclin D1 mRNA turnover. Mol. Cell. Biol. 20, 7903–7913 (2000).

    Article  CAS  Google Scholar 

  38. Joyce, D. et al. NF-κB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev. 12, 73–90 (2001).

    Article  CAS  Google Scholar 

  39. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    Article  CAS  Google Scholar 

  40. Deng, C., Zhang, P., Harper, J.W., Elledge, S.J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    Article  CAS  Google Scholar 

  41. Matsuo, K. et al. Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nature Genet. 24, 184–187 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to H.C. Theuβl for ES cell injections; to M. Yaniv (Pasteur Institute, Paris) for the JunB monoclonal antibody; to M. Oren for the p53 promoter construct; to R. Müller for the cyclin D1 promoter construct; to H. vanDam for the 5xJun2–luc reporter; and to M.-H. Idarraga-Amado and D. Mayr for maintaining our mouse colonies. We thank M. Bouchard, H. van Dam, M. Karin, M. Schreiber and M. Sibilia for critically reading the manuscript, and members of the Wagner laboratory for stimulating discussions and assistance. The Institute of Molecular Pathology is supported by Boehringer-Ingelheim, and this work was partly funded by the Austrian Research Foundation, by a TMR network grant from the European Economic Community and by a Marie Curie Fellowship from the European Community to W.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin F. Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passegué, E., Jochum, W., Behrens, A. et al. JunB can substitute for Jun in mouse development and cell proliferation. Nat Genet 30, 158–166 (2002). https://doi.org/10.1038/ng790

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng790

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing