Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Life extension through neurofibromin mitochondrial regulation and antioxidant therapy for neurofibromatosis-1 in Drosophila melanogaster

Abstract

We investigated the pathophysiology of neurofibromatosis-1 (NF1) in Drosophila melanogaster by inactivation or overexpression of the NF1 gene. NF1 gene mutants had shortened life spans and increased vulnerability to heat and oxidative stress in association with reduced mitochondrial respiration and elevated reactive oxygen species (ROS) production. Flies overexpressing NF1 had increased life spans, improved reproductive fitness, increased resistance to oxidative and heat stress in association with increased mitochondrial respiration and a 60% reduction in ROS production. These phenotypic effects proved to be modulated by the adenylyl cyclase/cyclic AMP (cAMP)/protein kinase A pathway, not the Ras/Raf pathway. Treatment of wild-type D. melanogaster with cAMP analogs increased their life span, and treatment of NF1 mutants with metalloporphyrin catalytic antioxidant compounds restored their life span. Thus, neurofibromin regulates longevity and stress resistance through cAMP regulation of mitochondrial respiration and ROS production, and NF1 may be treatable using catalytic antioxidants.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: NF1 deficiency shortens D. melanogaster life span through adenylyl cyclase/cAMP/PKA signaling.
Figure 2: Mitochondrial energy deficiency and increased oxidative stress of NF1 mutants can be rescued by antioxidants.
Figure 3: Life extension in flies by overexpression of NF1.
Figure 4: Phenotypic analysis of hsNF1/+;K33 versus K33 flies.
Figure 5: Upregulation of cAMP/PKA signaling extends D. melanogaster life span.
Figure 6: NF1 overexpression increases complex I respiration and activity, reduces ROS production and protects aconitase activity.
Figure 7: The mechanism of neurofibromin-regulated life span.

References

  1. Korf, B.R. Malignancy in neurofibromatosis type 1. Oncologist 5, 477–485 (2000).

    Article  CAS  Google Scholar 

  2. Friedman, J.M. Epidemiology of neurofibromatosis type 1. Am. J. Med. Genet. 89, 1–6 (1999).

    Article  CAS  Google Scholar 

  3. Arun, D. & Gutmann, D.H. Recent advances in neurofibromatosis type 1. Curr. Opin. Neurol. 17, 101–105 (2004).

    Article  CAS  Google Scholar 

  4. Williams, J.A., Su, H.S., Bernards, A., Field, J. & Sehgal, A. A circadian output in Drosophila mediated by neurofibromatosis-1 and Ras/MAPK. Science 293, 2251–2256 (2001).

    Article  CAS  Google Scholar 

  5. Harrisingh, M.C. & Lloyd, A.C. Ras/Raf/ERK signalling and NF1. Cell Cycle 3, 1255–1258 (2004).

    Article  CAS  Google Scholar 

  6. Guo, H.F., Tong, J., Hannan, F., Luo, L. & Zhong, Y. A neurofibromatosis-1-regulated pathway is required for learning in Drosophila. Nature 403, 895–898 (2000).

    Article  CAS  Google Scholar 

  7. Tong, J., Hannan, F., Zhu, Y., Bernards, A. & Zhong, Y. Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat. Neurosci. 5, 95–96 (2002).

    Article  CAS  Google Scholar 

  8. The, I. et al. Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science 276, 791–794 (1997).

    Article  CAS  Google Scholar 

  9. Yohay, K.H. The genetic and molecular pathogenesis of NF1 and NF2. Semin. Pediatr. Neurol. 13, 21–26 (2006).

    Article  Google Scholar 

  10. Guo, H.F., The, I., Hannan, F., Bernards, A. & Zhong, Y. Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuropeptides. Science 276, 795–798 (1997).

    Article  CAS  Google Scholar 

  11. Zhong, Y., Budnik, V. & Wu, C.F. Synaptic plasticity in Drosophila memory and hyperexcitable mutants: role of cAMP cascade. J. Neurosci. 12, 644–651 (1992).

    Article  CAS  Google Scholar 

  12. Bus, J.S. & Gibson, J.E. Paraquat: model for oxidant-initiated toxicity. Environ. Health Perspect. 55, 37–46 (1984).

    Article  CAS  Google Scholar 

  13. Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).

    Article  CAS  Google Scholar 

  14. Das, N., Levine, R.L., Orr, W.C. & Sohal, R.S. Selectivity of protein oxidative damage during aging in Drosophila melanogaster. Biochem. J. 360, 209–216 (2001).

    Article  CAS  Google Scholar 

  15. Yan, L.J., Levine, R.L. & Sohal, R.S. Oxidative damage during aging targets mitochondrial aconitase. Proc. Natl. Acad. Sci. USA [published erratum appears in Proc. Natl. Acad. Sci. USA 1998 Feb 17;95(4):1968] 94, 11168–11172 (1997).

    Article  CAS  Google Scholar 

  16. Day, B.J., Shawen, S., Liochev, S.I. & Crapo, J.D. A metalloporphyrin superoxide dismutase mimetic protects against paraquat-induced endothelial cell injury, in vitro. J. Pharmacol. Exp. Ther. 275, 1227–1232 (1995).

    CAS  PubMed  Google Scholar 

  17. Kachadourian, R., Johnson, C.A., Min, E., Spasojevic, I. & Day, B.J. Flavin-dependent antioxidant properties of a new series of meso-N,N'-dialkyl-imidazolium substituted manganese(III) porphyrins. Biochem. Pharmacol. 67, 77–85 (2004).

    Article  CAS  Google Scholar 

  18. Patel, M. & Day, B.J. Metalloporphyrin class of therapeutic catalytic antioxidants. Trends Pharmacol. Sci. 20, 359–364 (1999).

    Article  CAS  Google Scholar 

  19. Day, B.J. Catalytic antioxidants: a radical approach to new therapeutics. Drug Discov. Today 9, 557–566 (2004).

    Article  CAS  Google Scholar 

  20. Parkes, T.L. et al. Extension of Drosophila life span by overexpression of human SOD1 in motorneurons. Nat. Genet. 19, 171–174 (1998).

    Article  CAS  Google Scholar 

  21. Phillips, J.P., Parkes, T.L. & Hilliker, A.J. Targeted neuronal gene expression and longevity in Drosophila. Exp. Gerontol. 35, 1157–1164 (2000).

    Article  CAS  Google Scholar 

  22. Williams, G.C. Pleiotropy, natural selection, and the evoluton of senescence. Evolution Int. J. Org. Evolution 11, 398–411 (1957).

    Article  Google Scholar 

  23. Orr, W.C. & Sohal, R.S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128–1130 (1994).

    Article  CAS  Google Scholar 

  24. Sun, J., Folk, D., Bradley, T.J. & Tower, J. Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 161, 661–672 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun, J., Molitor, J. & Tower, J. Effects of simultaneous over-expression of Cu/ZnSOD and MnSOD on Drosophila melanogaster life span. Mech. Ageing Dev. 125, 341–349 (2004).

    Article  CAS  Google Scholar 

  26. Magwere, T. et al. The effects of exogenous antioxidants on life span and oxidative stress resistance in Drosophila melanogaster. Mech. Ageing Dev. 127, 356–370 (2006).

    Article  CAS  Google Scholar 

  27. Li, Q.Y., Pedersen, C., Day, B.J. & Patel, M. Dependence of excitotoxic neurodegeneration on mitochondrial aconitase inactivation. J. Neurochem. 78, 746–755 (2001).

    Article  CAS  Google Scholar 

  28. Velsor, L.W. et al. Mitochondrial oxidative stress in human hepatoma cells exposed to stavudine. Toxicol. Appl. Pharmacol. 199, 10–19 (2004).

    Article  CAS  Google Scholar 

  29. Daitoku, H., Yamagata, K., Matsuzaki, H., Hatta, M. & Fukamizu, A. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes 52, 642–649 (2003).

    Article  CAS  Google Scholar 

  30. Gershman, B. et al. High resolution dynamics of the transcriptional response to nutrition in Drosophila: a key role for dFOXO. Physiol. Genomics, published online 7 November 2006 (doi:10.1152/physiolgenomics.00061.2006).

    Article  CAS  Google Scholar 

  31. Technikova-Dobrova, Z. et al. Cyclic adenosine monophosphate-dependent phosphorylation of mammalian mitochondrial proteins: enzyme and substrate characterization and functional role. Biochemistry 40, 13941–13947 (2001).

    Article  CAS  Google Scholar 

  32. Chen, R., Fearnley, I.M., Peak-Chew, S.Y. & Walker, J.E. The phosphorylation of subunits of complex I from bovine heart mitochondria. J. Biol. Chem. 279, 26036–26045 (2004).

    Article  CAS  Google Scholar 

  33. Pocsfalvi, G. et al. Phosphorylation of B14.5a subunit from bovine heart complex I identified by titanium dioxide selective enrichment and shotgun proteomics. Mol. Cell Proteomics 6, 231–237 (2006).

    Article  Google Scholar 

  34. Bellomo, F. et al. Regulation by the cAMP cascade of oxygen free radical balance in mammalian cells. Antioxid. Redox Signal. 8, 495–502 (2006).

    Article  CAS  Google Scholar 

  35. Papa, S. et al. Complex I and the cAMP cascade in human physiopathology. Biosci. Rep. 22, 3–16 (2002).

    Article  CAS  Google Scholar 

  36. Piccoli, C. et al. cAMP controls oxygen metabolism in mammalian cells. FEBS Lett. 580, 4539–4543 (2006).

    Article  CAS  Google Scholar 

  37. Kurtz, A. et al. Somatic mitochondrial DNA mutations in neurofibromatosis type 1-associated tumors. Mol. Cancer Res. 2, 433–441 (2004).

    CAS  PubMed  Google Scholar 

  38. Petros, J.A. et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc. Natl. Acad. Sci. USA 102, 719–724 (2005).

    Article  CAS  Google Scholar 

  39. Brandon, M., Baldi, P. & Wallace, D.C. Mitochondrial mutations in cancer. Oncogene 25, 4647–4662 (2006).

    Article  CAS  Google Scholar 

  40. Burdon, R.H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic. Biol. Med. 18, 775–794 (1995).

    Article  CAS  Google Scholar 

  41. Barrientos, A. In vivo and in organello assessment of OXPHOS activities. Methods 26, 307–316 (2002).

    Article  CAS  Google Scholar 

  42. Williams, M.D. et al. Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice. J. Biol. Chem. 273, 28510–28515 (1998).

    Article  CAS  Google Scholar 

  43. Beauchamp, C. & Fridovich, I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287 (1971).

    Article  CAS  Google Scholar 

  44. Beers, R. & Sizer, I. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133–140 (1952).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Summers, J. Nguyen, M. Holmbeck and A. Skejsol for their technical assistance. We also thank V. Caiozzo, V. Procaccio, L. Mueller, V. Subramaniam, K. Waymire, M. Kernan, E. Ruiz-Pesini, A. Flierl, G. McGregor, P. Coskun, S. Gaffey and M. T. Lott for their comments and help. We thank J. Williams (New Jersey Medical and Dental School) for the UAS-dNF1 transgenic lines. This work was supported by the Ellison New Opportunity Award, by a US National Institutes of Health (NIH) multidisciplinary exercise fellowship (AR-47752) and Grass Foundation fellowship awards for 2004 and 2006 to J.J.T. and by an Ellison Foundation Senior Investigator Award and NIH grants AG13154, AG24373, AG01751, DK73691, NS21328 and NS41850 awarded to D.C.W.

Author information

Authors and Affiliations

Authors

Contributions

J.J.T. produced Figures 1,2,3,4,5,6,–7 and Supplementary Figures 1, 2, 3b, 4, 5, 6, and 7a, prepared the manuscript and contributed to the revisions and correspondence during the review process. S.E.S. produced Supplementary Figures 3a and 7b and contributed to the manuscript revision. D.M. contributed to Figures 4a–c and 5 and Supplementary Figure 4c. B.J.D. provided MnTDEIP. D.C.W. supervised, managed and funded the research and revised and finalized the manuscript.

Corresponding author

Correspondence to Douglas C Wallace.

Ethics declarations

Competing interests

B.J.D. is a consultant for and holds equity in Aeolus Pharmaceutical, which is commercially developing porphyrins as therapeutic agents.

Supplementary information

Supplementary Fig. 1

Normal desiccation tolerance in NF1 mutants. (PDF 44 kb)

Supplementary Fig. 2

NF1/AC/cAMP signaling modulated mitochondrial respiration. (PDF 20 kb)

Supplementary Fig. 3

Intact oxidative stress defense enzymes in NF1 mutants. (PDF 20 kb)

Supplementary Fig. 4

Life extension correlated with NF1 expression level. (PDF 54 kb)

Supplementary Fig. 5

Life extension in Drosophila melanogaster by neuronal NF1 overexpression. (PDF 73 kb)

Supplementary Fig. 6

Elevated cAMP in NF1-overexpressing flies and cAMP feeding did not alter fly body weights. (PDF 102 kb)

Supplementary Fig. 7

NF1 expression did not alter dephosphorylated FOXO or MnSOD levels. (PDF 38 kb)

Supplementary Table 1

Gompertz parameters of NF1-overexpressing flies. (PDF 96 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tong, J., Schriner, S., McCleary, D. et al. Life extension through neurofibromin mitochondrial regulation and antioxidant therapy for neurofibromatosis-1 in Drosophila melanogaster. Nat Genet 39, 476–485 (2007). https://doi.org/10.1038/ng2004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng2004

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing