Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning

A Corrigendum to this article was published on 01 October 2007

This article has been updated

Abstract

Therapeutic cloning, whereby somatic cell nuclear transfer (SCNT) is used to generate patient-specific embryonic stem cells (ESCs) from blastocysts cloned by nuclear transfer (ntESCs), holds great promise for the treatment of many human diseases. ntESCs have been derived in mice and cattle, but thus far there are no credible reports of human ntESCs. Here we review the recent literature on nuclear reprogramming by SCNT, including studies of gene expression, DNA methylation, chromatin remodeling, genomic imprinting and X chromosome inactivation. Reprogramming of genes expressed in the inner cell mass, from which ntESCs are derived, seems to be highly efficient. Defects in the extraembryonic lineage are probably the major cause of the low success rate of reproductive cloning but are not expected to affect the derivation of ntESCs. We remain optimistic that human therapeutic cloning is achievable and that the derivation of patient-specific ntESC lines will have great potential for regenerative medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Efficiency of blastocyst development, ESC line derivation and embryo term development in mice and cattle.
Figure 2: Methylation dynamics during normal early embryonic development and in clones, adapted from ref. 27.
Figure 3: X chromosome inactivation in the ICM and TE lineages of normal and cloned mouse embryos.
Figure 4: Efficiency of tetraploid complementation with ESCs derived from fertilized (fESCs) and embryos cloned by nuclear transfer (ntESCs).

Similar content being viewed by others

Change history

  • 26 September 2007

    In the version of this article initially published, the legend for Figure 1 is inaccurate. The original legend for Figure 1c failed to note that the cells derived from cattle embryos were embryonic stem cell (ESC)-like trophectoderm cell colonies. The full legend for Figure 1c should read “Therapeutic cloning: percentage ESC line derivation (mice) or ESC-like trophectoderm cell colony formation (cattle) from embryos derived from both IVF and nuclear transfer." This error has been corrected in the HTML and PDF versions of the article.

References

  1. Hochedlinger, K. & Jaenisch, R. Nuclear transplantation, embryonic stem cells, and the potential for cell therapy. N. Engl. J. Med. 349, 275–286 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Wakayama, T. et al. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292, 740–743 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, L. et al. Generation and characterization of pluripotent stem cells from cloned bovine embryos. Biol. Reprod. 73, 149–155 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Kennedy, D. Editorial retraction. Science 311, 335 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Cibelli, J.B., Lanza, R.P., Campbell, K.H. & West, M.D. Principles of Cloning (Academic Press, San Diego, 2002).

    Google Scholar 

  6. Kruip, T.A. & den Daas, J.H.G. In vitro produced and cloned embryos: effects on pregnancy, parturition and offspring. Theriogenology 49, 43–52 (1997).

    Article  Google Scholar 

  7. Zhu, J. et al. Improvement of an electrical activation protocol for porcine oocytes. Biol. Reprod. 66, 635–641 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Cibelli, J.B., Campbell, K.H., Seidel, G.E., West, M.D. & Lanza, R.P. The health profile of cloned animals. Nat. Biotechnol. 20, 13–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Young, L.E., Sinclair, K.D. & Wilmut, I. Large offspring syndrome in cattle and sheep. Rev. Reprod. 3, 155–163 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Farin, P.W., Piedrahita, J.A. & Farin, C.E. Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology 65, 178–191 (2006).

    Article  PubMed  Google Scholar 

  11. Suemizu, H. et al. Expression profiling of placentomegaly associated with nuclear transplantation of mouse ES cells. Dev. Biol. 253, 36–53 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Chavatte-Palmer, P. et al. Clinical, hormonal, and hematologic characteristics of bovine calves derived from nuclei from somatic cells. Biol. Reprod. 66, 1596–1603 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Constant, F. et al. Large offspring or large placenta syndrome? Morphometric analysis of late gestation bovine placentomes from somatic nuclear transfer pregnancies complicated by hydrallantois. Biol. Reprod. 75, 122–130 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Wakayama, S. et al. Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocyst. Stem Cells 24, 2023–2033 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Wakayama, S. et al. Establishment of male and female nuclear transfer embryonic stem cell lines from different mouse strains and tissues. Biol. Reprod. 72, 932–936 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Inoue, K. et al. Inefficient reprogramming of the hematopoietic stem cell genome following nuclear transfer. J. Cell Sci. 119, 1985–1991 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Li, X., Kato, Y. & Tsunoda, Y. Comparative analysis of development-related gene expression in mouse preimplantation embryos with different developmental potential. Mol. Reprod. Dev. 72, 152–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Winger, Q.A. et al. Genetic reprogramming of lactate dehydrogenase, citrate synthase, and phosphofructokinase mRNA in bovine nuclear transfer embryos produced using bovine fibroblast cell nuclei. Mol. Reprod. Dev. 56, 458–464 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Daniels, R., Hall, V. & Trounson, A.O. Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei. Biol. Reprod. 63, 1034–1040 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Wrenzycki, C. et al. Nuclear transfer protocol affects messenger RNA expression patterns in cloned bovine blastocysts. Biol. Reprod. 65, 309–317 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Jouneau, A. et al. Developmental abnormalities of NT mouse embryos appear early after implantation. Development 133, 1597–1607 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Bortvin, A. et al. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 130, 1673–1680 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Boiani, M., Eckardt, S., Scholer, H.R. & McLaughlin, K.J. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev. 16, 1209–1219 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith, S.L. et al. Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning. Proc. Natl. Acad. Sci. USA 102, 17582–17587 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pfister-Genskow, M. et al. Identification of differentially expressed genes in individual bovine preimplantation embryos produced by nuclear transfer: improper reprogramming of genes required for development. Biol. Reprod. 72, 546–555 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Somers, J. et al. Gene expression profiling of individual bovine nuclear transfer blastocysts. Reproduction 131, 1073–1084 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Dean, W., Santos, F. & Reik, W. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin. Cell Dev. Biol. 14, 93–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Reik, W., Santos, F., Mitsuya, K., Morgan, H. & Dean, W. Epigenetic asymmetry in the mammalian zygote and early embryo: relationship to lineage commitment? Phil. Trans R Soc. Lond. B Biol. Sci. 358, 1403–1409 (2003).

    Article  CAS  Google Scholar 

  29. Mayer, W., Niveleau, A., Walter, J., Fundele, R. & Haaf, T. Demethylation of the zygotic paternal genome. Nature 403, 501–502 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Cardoso, M.C. & Leonhardt, H. DNA methyltransferase is actively retained in the cytoplasm during early development. J. Cell Biol. 147, 25–32 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dean, W. et al. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl. Acad. Sci. USA 98, 13734–13738 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Li, E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet. 3, 662–673 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Santos, F. et al. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr. Biol. 13, 1116–1121 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Wilkins, J.F. & Haig, D. What good is genomic imprinting: the function of parent-specific gene expression. Nat. Rev. Genet. 4, 359–368 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Tycko, B. & Morison, I.M. Physiological functions of imprinted genes. J. Cell. Physiol. 192, 245–258 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Wagschal, A. & Feil, R. Genomic imprinting in the placenta. Cytogenet. Genome Res. 113, 90–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Latham, K.E. Epigenetic modification and imprinting of the mammalian genome during development. Curr. Top. Dev. Biol. 43, 1–49 (1999).

    CAS  PubMed  Google Scholar 

  39. Monk, M. & Salpekar, A. Expression of imprinted genes in human preimplantation development. Mol. Cell. Endocrinol. 183 (Suppl.), S35–S40 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Scott, L.A., Kuroiwa, A., Matsuda, Y. & Wichman, H.A. X accumulation of LINE-1 retrotransposons in Tokudaia osimensis, a spiny rat with the karyotype XO. Cytogenet. Genome Res. 112, 261–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Lyon, M.F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373 (1961).

    Article  CAS  PubMed  Google Scholar 

  42. Borsani, G. et al. Characterization of a murine gene expressed from the inactive X chromosome. Nature 351, 325–329 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Okamoto, I., Otte, A.P., Allis, C.D., Reinberg, D. & Heard, E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Takagi, N. & Sasaki, M. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256, 640–642 (1975).

    Article  CAS  PubMed  Google Scholar 

  45. Takagi, N., Sugawara, O. & Sasaki, M. Regional and temporal changes in the pattern of X-chromosome replication during the early post-implantation development of the female mouse. Chromosoma 85, 275–286 (1982).

    Article  CAS  PubMed  Google Scholar 

  46. Okamoto, I. et al. Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature 438, 369–373 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Thorvaldsen, J.L., Verona, R.I. & Bartolomei, M.S. X-tra! X-tra! News from the mouse X chromosome. Dev. Biol. 298, 344–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Xue, F. et al. Aberrant patterns of X chromosome inactivation in bovine clones. Nat. Genet. 31, 216–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Tada, T. et al. Imprint switching for non-random X-chromosome inactivation during mouse oocyte growth. Development 127, 3101–3105 (2000).

    CAS  PubMed  Google Scholar 

  50. De La Fuente, R., Hahnel, A., Basrur, P.K. & King, W.A. X inactive-specific transcript (Xist) expression and X chromosome inactivation in the preattachment bovine embryo. Biol. Reprod. 60, 769–775 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Morgan, H.D., Santos, F., Green, K., Dean, W. & Reik, W. Epigenetic reprogramming in mammals. Hum Mol Genet 14, R47–R58 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Zuccotti, M., Garagna, S. & Redi, C.A. Nuclear transfer, genome reprogramming and novel opportunities in cell therapy. J. Endocrinol. Invest. 23, 623–629 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Bourc'his, D. et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr. Biol. 11, 1542–1546 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Han, Y.M., Kang, Y.K., Koo, D.B. & Lee, K.K. Nuclear reprogramming of cloned embryos produced in vitro. Theriogenology 59, 33–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Kang, Y.K. et al. Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. EMBO J. 21, 1092–1100 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Suteevun, T. et al. Epigenetic characteristics of cloned and in vitro-fertilized swamp buffalo (Bubalus bubalis) embryos. J. Anim. Sci. 84, 2065–2071 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Enright, B.P., Sung, L.Y., Chang, C.C., Yang, X. & Tian, X.C. Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2'-deoxycytidine. Biol. Reprod. 72, 944–948 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Kishigami, S. et al. Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem. Biophys. Res. Commun. 340, 183–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Rybouchkin, A., Kato, Y. & Tsunoda, Y. Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer. Biol. Reprod. 74, 1083–1089 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. DeBaun, M.R., Niemitz, E.L. & Feinberg, A.P. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am. J. Hum. Genet. 72, 156–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Tamashiro, K.L. et al. Cloned mice have an obese phenotype not transmitted to their offspring. Nat. Med. 8, 262–267 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Inoue, K. et al. Faithful expression of imprinted genes in cloned mice. Science 295, 297 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Yang, L. et al. Expression of imprinted genes is aberrant in deceased newborn cloned calves and relatively normal in surviving adult clones. Mol. Reprod. Dev. 71, 431–438 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Eggan, K. et al. X–chromosome inactivation in cloned mouse embryos. Science 290, 1578–1581 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Nolen, L.D. et al. X chromosome reactivation and regulation in cloned embryos. Dev. Biol. 279, 525–540 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Senda, S. et al. Skewed X-inactivation in cloned mice. Biochem. Biophys. Res. Commun. 321, 38–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Hemberger, M. The role of the X chromosome in mammalian extra embryonic development. Cytogenet. Genome Res. 99, 210–217 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Munsie, M.J. et al. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr. Biol. 10, 989–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Brambrink, T., Hochedlinger, K., Bell, G. & Jaenisch, R. ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc. Natl. Acad. Sci. USA (2006).

  70. Nagy, A. et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development 110, 815–821 (1990).

    CAS  PubMed  Google Scholar 

  71. Wakayama, S. et al. Propagation of an infertile hermaphrodite mouse lacking germ cells by using nuclear transfer and embryonic stem cell technology. Proc. Natl. Acad. Sci. USA 102, 29–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Eggan, K. et al. Mice cloned from olfactory sensory neurons. Nature 428, 44–49 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Hochedlinger, K. & Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035–1038 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Li, J., Ishii, T., Feinstein, P. & Mombaerts, P. Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature 428, 393–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Cibelli, J.B. et al. Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat. Biotechnol. 16, 642–646 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Iwasaki, S., Campbell, K.H., Galli, C. & Akiyama, K. Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biol. Reprod. 62, 470–475 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Wakayama, S. et al. Mice cloned by nuclear transfer from somatic and ntES cells derived from the same individuals. J. Reprod. Dev. 51, 765–772 (2005).

    Article  PubMed  Google Scholar 

  78. Koo, D.B. et al. Aberrant allocations of inner cell mass and trophectoderm cells in bovine nuclear transfer blastocysts. Biol. Reprod. 67, 487–492 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Hashizume, K. et al. Implantation and placental development in somatic cell clone recipient cows. Cloning Stem Cells 4, 197–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Hill, J.R., Schlafer, D.H., Fisher, P.J. & Davies, C.J. Abnormal expression of trophoblast major histocompatibility complex class I antigens in cloned bovine pregnancies is associated with a pronounced endometrial lymphocytic response. Biol. Reprod. 67, 55–63 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Kim, H.R. et al. Protein profiles of bovine placenta derived from somatic cell nuclear transfer. Proteomics 5, 4264–4273 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Humpherys, D. et al. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc. Natl. Acad. Sci. USA 99, 12889–12894 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Eakin, G.S. & Behringer, R.R. Tetraploid development in the mouse. Dev. Dyn. 228, 751–766 (2003).

    Article  PubMed  Google Scholar 

  84. Lee, J.B. & Park, C. Molecular genetics: verification that Snuppy is a clone. Nature 440, E2–E3 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Simerly, C. et al. Molecular correlates of primate nuclear transfer failures. Science 300, 297 (2003).

    Article  PubMed  Google Scholar 

  86. Evans, M.J. et al. Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep. Nat. Genet. 23, 90–93 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Steinborn, R. et al. Mitochondrial DNA heteroplasmy in cloned cattle produced by fetal and adult cell cloning. Nat. Genet. 25, 255–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Dimauro, S. & Davidzon, G. Mitochondrial DNA and disease. Ann. Med. 37, 222–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Chen, Y. et al. Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes. Cell Res. 13, 251–263 (2003).

    Article  PubMed  Google Scholar 

  90. Illmensee, K., Levanduski, M. & Zavos, P.M. Evaluation of the embryonic preimplantation potential of human adult somatic cells via an embryo interspecies bioassay using bovine oocytes. Fertil. Steril. 85 (Suppl.), 1248–1260 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Hubner, K. et al. Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251–1256 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Dyce, P.W., Wen, L. & Li, J. In vitro germline potential of stem cells derived from fetal porcine skin. Nat. Cell Biol. 8, 384–390 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Much appreciation is due to C. Jennings for many discussions, comments and editorial assistance on this manuscript and to M. Watanabe for her assistance in preparation of the manuscript. This work was partially funded by grants from the US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Smith, S., Tian, X. et al. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet 39, 295–302 (2007). https://doi.org/10.1038/ng1973

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1973

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing