Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

DNA methylation profiling of human chromosomes 6, 20 and 22

Abstract

DNA methylation is the most stable type of epigenetic modification modulating the transcriptional plasticity of mammalian genomes. Using bisulfite DNA sequencing, we report high-resolution methylation profiles of human chromosomes 6, 20 and 22, providing a resource of about 1.9 million CpG methylation values derived from 12 different tissues. Analysis of six annotation categories showed that evolutionarily conserved regions are the predominant sites for differential DNA methylation and that a core region surrounding the transcriptional start site is an informative surrogate for promoter methylation. We find that 17% of the 873 analyzed genes are differentially methylated in their 5′ UTRs and that about one-third of the differentially methylated 5′ UTRs are inversely correlated with transcription. Despite the fact that our study controlled for factors reported to affect DNA methylation such as sex and age, we did not find any significant attributable effects. Our data suggest DNA methylation to be ontogenetically more stable than previously thought.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Type and distribution of amplicons.
Figure 2: Amplicon coverage in the context of gene and CpG island annotation, as shown for a 1-Mb region on chromosome 22q12.2.
Figure 3: Correlation of DNA methylation with spatial distance and cell type.
Figure 4: CpG methylation at transcription start sites (TSSs).
Figure 5: Global DNA methylation, age and sex.
Figure 6: Analysis of T-DMRs.
Figure 7: Conservation of methylation between human and mouse orthologous amplicons.

References

  1. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

  2. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  Article  Google Scholar 

  3. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245–254 (2003).

    CAS  Article  Google Scholar 

  4. Murrell, A., Rakyan, V.K. & Beck, S. From genome to epigenome. Hum. Mol. Genet. 14, R3–R10 (2005).

    CAS  Article  Google Scholar 

  5. Jones, P.A. & Martienssen, R. A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop. Cancer Res. 65, 11241–11246 (2005).

    CAS  Article  Google Scholar 

  6. Rakyan, V.K. et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol. 2, 2170–2182 (2004).

    CAS  Article  Google Scholar 

  7. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862 (2005).

    CAS  Article  Google Scholar 

  8. Schumacher, A. et al. Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res. 34, 528–542 (2006).

    CAS  Article  Google Scholar 

  9. Khulan, B. et al. Comparative isoschizomer profiling of cytosine methylation: The HELP assay. Genome Res. 16, 1046–1055 (2006).

    CAS  Article  Google Scholar 

  10. Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89, 1827–1831 (1992).

    CAS  Article  Google Scholar 

  11. Strichman-Almashanu, L.Z. et al. A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Genome Res. 12, 543–554 (2002).

    CAS  Article  Google Scholar 

  12. Smiraglia, D.J. et al. Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Hum. Mol. Genet. 10, 1413–1419 (2001).

    CAS  Article  Google Scholar 

  13. Grunau, C., Hindermann, W. & Rosenthal, A. Large-scale methylation analysis of human genomic DNA reveals tissue-specific differences between the methylation profiles of genes and pseudogenes. Hum. Mol. Genet. 9, 2651–2663 (2000).

    CAS  Article  Google Scholar 

  14. Duncan, B.K. & Miller, J.H. Mutagenic deamination of cytosine residues in DNA. Nature 287, 560–561 (1980).

    CAS  Article  Google Scholar 

  15. Hayward, B.E. et al. The human GNAS1 gene is imprinted and encodes distinct paternally and biallelically expressed G proteins. Proc. Natl. Acad. Sci. USA 95, 10038–10043 (1998).

    CAS  Article  Google Scholar 

  16. Kalscheuer, V.M., Mariman, E.C., Schepens, M.T., Rehder, H. & Ropers, H.H. The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nat. Genet. 5, 74–78 (1993).

    CAS  Article  Google Scholar 

  17. Verhaagh, S., Schweifer, N., Barlow, D.P. & Zwart, R. Cloning of the mouse and human solute carrier 22a3 (Slc22a3/SLC22A3) identifies a conserved cluster of three organic cation transporters on mouse chromosome 17 and human 6q26-q27. Genomics 55, 209–218 (1999).

    CAS  Article  Google Scholar 

  18. Xu, G.L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191 (1999).

    CAS  Article  Google Scholar 

  19. Frigola, J. et al. Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat. Genet. 38, 540–549 (2006).

    CAS  Article  Google Scholar 

  20. Zeng, W. et al. Transcript profile of CD4+ and CD8+ T cells from the bone marrow of acquired aplastic anemia patients. Exp. Hematol. 32, 806–814 (2004).

    CAS  Article  Google Scholar 

  21. Ashurst, J.L. et al. The Vertebrate Genome Annotation (Vega) database. Nucleic Acids Res. 33, D459–D465 (2005).

    CAS  Article  Google Scholar 

  22. Down, T.A. & Hubbard, T.J.P. Computational detection and location of transcription start sites in mammalian genomic DNA. Genome Res. 12, 458–461 (2002).

    CAS  Article  Google Scholar 

  23. Fuks, F. DNA methylation and histone modifications: teaming up to silence genes. Curr. Opin. Genet. Dev. 15, 490–495 (2005).

    CAS  Article  Google Scholar 

  24. Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).

    CAS  Article  Google Scholar 

  25. Mancini, D.N., Singh, S.M., Archer, T.K. & Rodenhiser, D.I. Site-specific DNA methylation in the neurofibromatosis (NF1) promoter interferes with binding of CREB and SP1 transcription factors. Oncogene 18, 4108–4119 (1999).

    CAS  Article  Google Scholar 

  26. Clark, S.J., Harrison, J. & Molloy, P.L. Sp1 binding is inhibited by (m)Cp(m)CpG methylation. Gene 195, 67–71 (1997).

    CAS  Article  Google Scholar 

  27. Holler, M., Westin, G., Jiricny, J. & Schaffner, W. Sp1 transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes Dev. 2, 1127–1135 (1988).

    CAS  Article  Google Scholar 

  28. Harrington, M.A., Jones, P.A., Imagawa, M. & Karin, M. Cytosine methylation does not affect binding of transcription factor Sp1. Proc. Natl. Acad. Sci. USA 85, 2066–2070 (1988).

    CAS  Article  Google Scholar 

  29. Fraga, M.F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA 102, 10604–10609 (2005).

    CAS  Article  Google Scholar 

  30. Shiota, K. DNA methylation profiles of CpG islands for cellular differentiation and development in mammals. Cytogenet. Genome Res. 105, 325–334 (2004).

    CAS  Article  Google Scholar 

  31. Costello, J.F., Smiraglia, D.J. & Plass, C. Restriction landmark genome scanning. Methods 27, 144–149 (2002).

    CAS  Article  Google Scholar 

  32. Shiota, K. et al. Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells 7, 961–969 (2002).

    CAS  Article  Google Scholar 

  33. Ansel, K.M., Djuretic, I., Tanasa, B. & Rao, A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu. Rev. Immunol. 24, 607–656 (2006).

    CAS  Article  Google Scholar 

  34. Jones, P.A. & Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415–428 (2002).

    CAS  Article  Google Scholar 

  35. Song, F. et al. Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc. Natl. Acad. Sci. USA 102, 3336–3341 (2005).

    CAS  Article  Google Scholar 

  36. Futscher, B.W. et al. Role for DNA methylation in the control of cell type specific maspin expression. Nat. Genet. 31, 175–179 (2002).

    CAS  Article  Google Scholar 

  37. Bernstein, B.E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).

    CAS  Article  Google Scholar 

  38. ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636–640 (2004).

  39. International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  40. Yoo, C.B. & Jones, P.A. Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov. 5, 37–50 (2006).

    CAS  Article  Google Scholar 

  41. Widschwendter, M. et al. Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res. 64, 3807–3813 (2004).

    CAS  Article  Google Scholar 

  42. Bjornsson, H.T., Fallin, M.D. & Feinberg, A.P. An integrated epigenetic and genetic approach to common human disease. Trends Genet. 20, 350–358 (2004).

    CAS  Article  Google Scholar 

  43. Curwen, V. et al. The Ensembl automatic gene annotation system. Genome Res. 14, 942–950 (2004).

    CAS  Article  Google Scholar 

  44. Gardiner-Garden, M. & Frommer, M. CpG islands in vertebrate genomes. J. Mol. Biol. 196, 261–282 (1987).

    CAS  Article  Google Scholar 

  45. Takai, D. & Jones, P.A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl. Acad. Sci. USA 99, 3740–3745 (2002).

    CAS  Article  Google Scholar 

  46. Berlin, K., Ballhause, M. & Cardon, K. Improved bisulfite conversion of DNA. Patent PCT/WO/2005/038051 (2005).

    Google Scholar 

  47. Lewin, J., Schmitt, A.O., Adorjan, P., Hildmann, T. & Piepenbrock, C. Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates. Bioinformatics 20, 3005–3012 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank E. Calautti for his advice on culturing of keratinocytes, A. Meyerhans for critical reading of the manuscript, J. Maass for her help obtaining tissue samples and K. Fischer for his support providing genomic annotations. F.E. thanks Y.-S. Kim for many discussions. V.K.R. was supported by a C.J. Martin Fellowship from the National Health and Medical Research Council of Australia. J.A., J.B., T.C., R.D., T.A.D., R.H., K.H., D.K.J., J.L., D.N., R.P., T.W., J.R. and S.B. were supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Florian Eckhardt or Stephan Beck.

Ethics declarations

Competing interests

S.B. is a member of the scientific advisory board of Epigenomics AG. K.B. and A.O. are founders of Epigenomics AG, A.O. is a consultant of this company, and K.B., M.B., R.C., F.E., C.H., C.K., J.K., J.L., T.O. and C.T. are employees of Epigenomics AG.

Supplementary information

Supplementary Fig. 1

Global methylation profiles of chromosomes 6, 20 and 22. (PDF 1082 kb)

Supplementary Fig. 2

Correlation between DNA methylation and CpG density. (PDF 953 kb)

Supplementary Fig. 3

Distinction of imprinting versus mosaicism at heterogeneously methylated loci. (PDF 890 kb)

Supplementary Fig. 4

Methylation of CGI- and non-CGI-containing 5′ UTRs. (PDF 1089 kb)

Supplementary Fig. 5

Cluster analysis of chromosome 22 amplicons. (PDF 987 kb)

Supplementary Fig. 6

Differentially methylated CGIs located within the 5′ UTR. (PDF 427 kb)

Supplementary Table 1

Sample details. (PDF 380 kb)

Supplementary Table 2

Examples of genes found to be differentially methylated. (PDF 552 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eckhardt, F., Lewin, J., Cortese, R. et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38, 1378–1385 (2006). https://doi.org/10.1038/ng1909

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1909

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing