Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Essential role of Jun family transcription factors in PU.1 knockdown–induced leukemic stem cells


Knockdown of the transcription factor PU.1 (encoded by Sfpi1) leads to acute myeloid leukemia (AML) in mice. We examined the transcriptome of preleukemic hematopoietic stem cells (HSCs) in which PU.1 was knocked down (referred to as 'PU.1-knockdown HSCs') to identify transcriptional changes preceding malignant transformation. Transcription factors c-Jun and JunB were among the top-downregulated targets. Restoration of c-Jun expression in preleukemic cells rescued the PU.1 knockdown–initiated myelomonocytic differentiation block. Lentiviral restoration of JunB at the leukemic stage led to loss of leukemic self-renewal capacity and prevented leukemia in NOD-SCID mice into which leukemic PU.1-knockdown cells were transplanted. Examination of human individuals with AML confirmed the correlation between PU.1 and JunB downregulation. These results delineate a transcriptional pattern that precedes leukemic transformation in PU.1-knockdown HSCs and demonstrate that decreased levels of c-Jun and JunB contribute to the development of PU.1 knockdown–induced AML by blocking differentiation and increasing self-renewal. Therefore, examination of disturbed gene expression in HSCs can identify genes whose dysregulation is essential for leukemic stem cell function and that are targets for therapeutic interventions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Examination of the phenotypic stem cell compartment and identification of LSCs in PU.1-knockdown mice.
Figure 2: Expression profiling in PU.1-knockdown HSCs.
Figure 3: Quantitative real-time RT-PCR and RNA slot blotting corroborate differential gene expression.
Figure 4: PU.1 directs activity of the Junb promoter.
Figure 5: Restoration of c-Jun expression partially rescues myelomonocytic differentiation.
Figure 6: Restoration of JunB expression in leukemic cells of PU.1-knockdown mice inhibits leukemogenesis.
Figure 7: PU.1 and JunB expression in individuals with AML.

Accession codes


Gene Expression Omnibus


  1. McKercher, S.R. et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 15, 5647–5658 (1996).

    Article  CAS  Google Scholar 

  2. Mueller, B.U. et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 100, 998–1007 (2002).

    Article  CAS  Google Scholar 

  3. Vangala, R.K. et al. The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 101, 270–277 (2003).

    Article  CAS  Google Scholar 

  4. Gilliland, D.G. & Tallman, M.S. Focus on acute leukemias. Cancer Cell 1, 417–420 (2002).

    Article  CAS  Google Scholar 

  5. Li, Y. et al. Regulation of the PU.1 gene by distal elements. Blood 98, 2958–2965 (2001).

    Article  CAS  Google Scholar 

  6. Okuno, Y. et al. Potential autoregulation of transcription factor PU.1 by an upstream regulatory element. Mol. Cell. Biol. 25, 2832–2845 (2005).

    Article  CAS  Google Scholar 

  7. Rosenbauer, F. et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat. Genet. 36, 624–630 (2004).

    Article  CAS  Google Scholar 

  8. Rosenbauer, F., Koschmieder, S., Steidl, U. & Tenen, D.G. Effect of transcription-factor concentrations on leukemic stem cells. Blood 106, 1519–1524 (2005).

    Article  CAS  Google Scholar 

  9. Tenen, D.G. Disruption of differentiation in human cancer: AML shows the way. Nat. Rev. Cancer 3, 89–101 (2003).

    Article  CAS  Google Scholar 

  10. Passegue, E., Wagner, E.F. & Weissman, I.L. JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 119, 431–443 (2004).

    Article  CAS  Google Scholar 

  11. Behre, G. et al. c-Jun is a JNK-independent coactivator of the PU.1 transcription factor. J. Biol. Chem. 274, 4939–4946 (1999).

    Article  CAS  Google Scholar 

  12. Phinney, D.G., Tseng, S.W., Hall, B. & Ryder, K. Chromosomal integration dependent induction of junB by growth factors requires multiple flanking evolutionarily conserved sequences. Oncogene 13, 1875–1883 (1996).

    CAS  PubMed  Google Scholar 

  13. Higuchi, M. et al. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 1, 63–74 (2002).

    Article  CAS  Google Scholar 

  14. Huntly, B.J. et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6, 587–596 (2004).

    Article  CAS  Google Scholar 

  15. Tenen, D.G., Hromas, R., Licht, J.D. & Zhang, D.E. Transcription factors, normal myeloid development, and leukemia. Blood 90, 489–519 (1997).

    CAS  Google Scholar 

  16. Borras, F.E., Lloberas, J., Maki, R.A. & Celada, A. Repression of I-A beta gene expression by the transcription factor PU.1. J. Biol. Chem. 270, 24385–24391 (1995).

    Article  CAS  Google Scholar 

  17. Bellon, T., Perrotti, D. & Calabretta, B. Granulocytic differentiation of normal hematopoietic precursor cells induced by transcription factor PU.1 correlates with negative regulation of the c-myb promoter. Blood 90, 1828–1839 (1997).

    CAS  PubMed  Google Scholar 

  18. Wang, Q., Salman, H., Danilenko, M. & Studzinski, G.P. Cooperation between antioxidants and 1,25-dihydroxyvitamin D3 in induction of leukemia HL60 cell differentiation through the JNK/AP-1/Egr-1 pathway. J. Cell. Physiol. 204, 964–974 (2005).

    Article  CAS  Google Scholar 

  19. Bhardwaj, G. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat. Immunol. 2, 172–180 (2001).

    Article  CAS  Google Scholar 

  20. Antonchuk, J., Sauvageau, G. & Humphries, R.K. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109, 39–45 (2002).

    Article  CAS  Google Scholar 

  21. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    Article  CAS  Google Scholar 

  22. Iwama, A. et al. Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21, 843–851 (2004).

    Article  CAS  Google Scholar 

  23. Duncan, A.W. et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat. Immunol. 6, 314–322 (2005).

    Article  CAS  Google Scholar 

  24. Valk, P.J. et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N. Engl. J. Med. 350, 1617–1628 (2004).

    Article  CAS  Google Scholar 

  25. Bullinger, L. et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N. Engl. J. Med. 350, 1605–1616 (2004).

    Article  CAS  Google Scholar 

  26. Bjerregaard, M.D., Jurlander, J., Klausen, P., Borregaard, N. & Cowland, J.B. The in vivo profile of transcription factors during neutrophil differentiation in human bone marrow. Blood 101, 4322–4332 (2003).

    Article  CAS  Google Scholar 

  27. Rosenbauer, F. et al. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nat. Genet. 38, 27–37 (2006).

    Article  CAS  Google Scholar 

  28. Reya, T., Morrison, S.J., Clarke, M.F. & Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  Google Scholar 

  29. Passegue, E., Jamieson, C.H., Ailles, L.E. & Weissman, I.L. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc. Natl. Acad. Sci. USA 100 (Suppl.) 11842–11849 (2003).

    Article  CAS  Google Scholar 

  30. Hope, K.J., Jin, L. & Dick, J.E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat. Immunol. 5, 738–743 (2004).

    Article  CAS  Google Scholar 

  31. Michor, F. et al. Dynamics of chronic myeloid leukaemia. Nature 435, 1267–1270 (2005).

    Article  CAS  Google Scholar 

  32. Wang, J.C. & Dick, J.E. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 15, 494–501 (2005).

    Article  CAS  Google Scholar 

  33. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  Google Scholar 

  34. Manz, M.G., Miyamoto, T., Akashi, K. & Weissman, I.L. Prospective isolation of human clonogenic common myeloid progenitors. Proc. Natl. Acad. Sci. USA 99, 11872–11877 (2002).

    Article  CAS  Google Scholar 

  35. Jamieson, C.H. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004).

    Article  CAS  Google Scholar 

  36. Steidl, U. et al. Primary human CD34+ hematopoietic stem and progenitor cells express functionally active receptors of neuromediators. Blood 104, 81–88 (2004).

    Article  CAS  Google Scholar 

  37. Ivanova, N.B. et al. A stem cell molecular signature. Science 298, 601–604 (2002).

    Article  CAS  Google Scholar 

  38. Kiel, M.J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  Google Scholar 

  39. Li, C. & Wong, W.H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. USA 98, 31–36 (2001).

    Article  CAS  Google Scholar 

  40. Li, C. & Hung, W.W. Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol. 2 RESEARCH0032 (2001).

  41. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R.C. & Melton, D.A. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600 (2002).

    Article  CAS  Google Scholar 

  42. Landgrebe, J., Wurst, W. & Welzl, G. Permutation-validated principal components analysis of microarray data. Genome Biol. 3 RESEARCH0019 (2002).

  43. Donninger, H. et al. Whole genome expression profiling of advance stage papillary serous ovarian cancer reveals activated pathways. Oncogene 23, 8065–8077 (2004).

    Article  CAS  Google Scholar 

  44. Kobayashi, S. et al. Calpain-mediated X-linked inhibitor of apoptosis degradation in neutrophil apoptosis and its impairment in chronic neutrophilic leukemia. J. Biol. Chem. 277, 33968–33977 (2002).

    Article  CAS  Google Scholar 

  45. Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).

    Article  CAS  Google Scholar 

  46. Pear, W.S. et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 92, 3780–3792 (1998).

    CAS  PubMed  Google Scholar 

  47. DeKoter, R.P., Walsh, J.C. & Singh, H.P.U. 1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J. 17, 4456–4468 (1998).

    Article  CAS  Google Scholar 

  48. Steidl, U. et al. Gene expression profiling identifies significant differences between the molecular phenotypes of bone marrow-derived and circulating human CD34+ hematopoietic stem cells. Blood 99, 2037–2044 (2002).

    Article  CAS  Google Scholar 

  49. Dolbeare, F., Gratzner, H., Pallavicini, M.G. & Gray, J.W. Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc. Natl. Acad. Sci. USA 80, 5573–5577 (1983).

    Article  CAS  Google Scholar 

  50. Verhaak, R.G. et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 106, 3747–3754 (2005).

    Article  CAS  Google Scholar 

Download references


We thank K. Martens for excellent assistance with mouse husbandry, M. Joseph for help with array hybridization, T. Dajaram and C. Hetherington for quantitative real-time RT-PCR analysis and J. Tigges and V. Toxavidis for expert assistance with multicolor flow cytometry and high-speed cell sorting. U.S. thanks S. Steidl for invaluable support and advice. U.S. also thanks R. Kronenwett and R. Haas for long-term support and mentorship. This work was supported by US National Institutes of Health grant CA41456 to D.G.T. and by fellowships of the Dr. Mildred Scheel Foundation for Cancer Research to U.S. (D/03/41221) and the Lymphoma Research Foundation to F.R.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Daniel G Tenen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Principal component analysis separates PU.1 knockdown from wild-type HSC on the basis of their gene expresson profiles. (PDF 14 kb)

Supplementary Fig. 2

Gene expression data of wild-type and PU.1 knockdown HSC measured by Affymetrix Mouse Genome 430 2.0 arrays. (PDF 20 kb)

Supplementary Fig. 3

Direct interaction pathway analysis. (PDF 187 kb)

Supplementary Fig. 4

Restoration of c-Jun expression rescues colony formation upon GM-CSF stimulation. (PDF 19 kb)

Supplementary Fig. 5

Flow cytometric analysis shows engraftment of GFP lentivirus-transduced PU.1 knockdown cells upon transplantation into NOD-SCID mice. (PDF 25 kb)

Supplementary Fig. 6

JunB and PU.1 expression in individuals with AML. (PDF 122 kb)

Supplementary Table 1

Selection of up- and downregulated genes in PU.1 knockdown HSC. (PDF 74 kb)

Supplementary Table 2

Oligonucleotides used for PCR and EMSA. (PDF 26 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Steidl, U., Rosenbauer, F., Verhaak, R. et al. Essential role of Jun family transcription factors in PU.1 knockdown–induced leukemic stem cells. Nat Genet 38, 1269–1277 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing