Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana


Light has an important role in modulating seedling growth and flowering time. We show that allelic variation at the PHYTOCHROME C (PHYC) photoreceptor locus affects both traits in natural populations of A. thaliana. Two functionally distinct PHYC haplotype groups are distributed in a latitudinal cline dependent on FRIGIDA, a locus that together with FLOWERING LOCUS C explains a large portion of the variation in A. thaliana flowering time1. In a genome-wide scan for association of 65 loci with latitude, there was an excess of significant P values, indicative of population structure. Nevertheless, PHYC was the most strongly associated locus across 163 strains, suggesting that PHYC alleles are under diversifying selection in A. thaliana. Our work, together with previous findings2,3,4,5, suggests that photoreceptor genes are major agents of natural variation in plant flowering and growth response.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Identification of a defective PHYC allele in Fr-2.
Figure 2: Quantitative complementation analysis.
Figure 3: PHYC haplotypes.
Figure 4: Latitudinal cline of PHYC alleles.

Accession codes




  1. Johanson, U. et al. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290, 344–347 (2000).

    CAS  Article  Google Scholar 

  2. Aukerman, M.J. et al. A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell 9, 1317–1326 (1997).

    CAS  Article  Google Scholar 

  3. El-Assal, S.E.-D., Alonso-Blanco, C., Peeters, A.J., Raz, V. & Koornneef, M.A. QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat. Genet. 29, 435–440 (2001).

    CAS  Article  Google Scholar 

  4. Maloof, J.N. et al. Natural variation in light sensitivity of Arabidopsis. Nat. Genet. 29, 441–446 (2001).

    CAS  Article  Google Scholar 

  5. Olsen, K.M. et al. Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics 167, 1361–1369 (2004).

    CAS  Article  Google Scholar 

  6. Shindo, C. et al. Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol. 138, 1163–1173 (2005).

    CAS  Article  Google Scholar 

  7. Lempe, J. et al. Diversity of flowering responses in wild Arabidopsis thaliana strains. PLoS Genet. 1, e6 (2005).

    Article  Google Scholar 

  8. Werner, J.D. et al. FRIGIDA-independent variation in flowering time of natural Arabidopsis thaliana accessions. Genetics 170, 1197–1207 (2005).

    CAS  Article  Google Scholar 

  9. Werner, J.D. et al. Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proc. Natl. Acad. Sci. USA 102, 2460–2465 (2005).

    CAS  Article  Google Scholar 

  10. Franklin, K.A., Davis, S.J., Stoddart, W.M., Vierstra, R.D. & Whitelam, G.C. Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis. Plant Cell 15, 1981–1989 (2003).

    CAS  Article  Google Scholar 

  11. Monte, E. et al. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell 15, 1962–1980 (2003).

    CAS  Article  Google Scholar 

  12. Qin, M., Kuhn, R., Moran, S. & Quail, P.H. Overexpressed phytochrome C has similar photosensory specificity to phytochrome B but a distinctive capacity to enhance primary leaf expansion. Plant J. 12, 1163–1172 (1997).

    CAS  Article  Google Scholar 

  13. Halliday, K.J., Thomas, B. & Whitelam, G.C. Expression of heterologous phytochromes A, B or C in transgenic tobacco plants alters vegetative development and flowering time. Plant J. 12, 1079–1090 (1997).

    CAS  Article  Google Scholar 

  14. Weinig, C. et al. Novel loci control variation in reproductive timing in Arabidopsis thaliana in natural environments. Genetics 162, 1875–1884 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, X., Korstanje, R., Higgins, D. & Paigen, B. Haplotype analysis in multiple crosses to identify a QTL gene. Genome Res. 14, 1767–1772 (2004).

    CAS  Article  Google Scholar 

  16. Alonso-Blanco, C., El-Assal, S.E., Coupland, G. & Koornneef, M. Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics 149, 749–764 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Borevitz, J.O. et al. Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana. Genetics 160, 683–696 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Loudet, O., Chaillou, S., Camilleri, C., Bouchez, D. & Daniel-Vedele, F. Bay-0 x Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theor. Appl. Genet. 104, 1173–1184 (2002).

    CAS  Article  Google Scholar 

  19. El-Lithy, M.E., Clerkx, E.J., Ruys, G.J., Koornneef, M. & Vreugdenhil, D. Quantitative trait locus analysis of growth-related traits in a new Arabidopsis recombinant inbred population. Plant Physiol. 135, 444–458 (2004).

    CAS  Article  Google Scholar 

  20. Wolyn, D.J. et al. Light-response quantitative trait loci identified with composite interval and eXtreme array mapping in Arabidopsis thaliana. Genetics 167, 907–917 (2004).

    CAS  Article  Google Scholar 

  21. Stinchcombe, J.R. et al. A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proc. Natl. Acad. Sci. USA 101, 4712–4717 (2004).

    CAS  Article  Google Scholar 

  22. Schmid, K.J. et al. Evidence for a large-scale population structure of Arabidopsis thaliana from genome-wide single nucleotide polymorphism markers. Theor. Appl. Genet. 112, 1104–1114 (2006).

    CAS  Article  Google Scholar 

  23. Caicedo, A.L., Stinchcombe, J.R., Olsen, K.M., Schmitt, J. & Purugganan, M.D. Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait. Proc. Natl. Acad. Sci. USA 101, 15670–15675 (2004).

    CAS  Article  Google Scholar 

  24. Wagner, D. & Quail, P.H. Mutational analysis of phytochrome B identifies a small COOH-terminal-domain region critical for regulatory activity. Proc. Natl. Acad. Sci. USA 92, 8596–8600 (1995).

    CAS  Article  Google Scholar 

  25. Xu, Y., Parks, B.M., Short, T.W. & Quail, P.H. Missense mutations define a restricted segment in the C-terminal domain of phytochrome A critical to its regulatory activity. Plant Cell 7, 1433–1443 (1995).

    CAS  Article  Google Scholar 

  26. Reed, J.W., Nagpal, P., Poole, D.S., Furuya, M. & Chory, J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5, 147–157 (1993).

    CAS  Article  Google Scholar 

  27. Takano, M. et al. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17, 3311–3325 (2005).

    CAS  Article  Google Scholar 

  28. Mathews, S. & Donoghue, M.J. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286, 947–950 (1999).

    CAS  Article  Google Scholar 

  29. White, G.M., Hamblin, M.T. & Kresovich, S. Molecular evolution of the phytochrome gene family in sorghum: changing rates of synonymous and replacement evolution. Mol. Biol. Evol. 21, 716–723 (2004).

    CAS  Article  Google Scholar 

  30. Devos, K.M., Beales, J., Ogihara, Y. & Doust, A.N. Comparative sequence analysis of the Phytochrome C gene and its upstream region in allohexaploid wheat reveals new data on the evolution of its three constituent genomes. Plant Mol. Biol. 58, 625–641 (2005).

    CAS  Article  Google Scholar 

Download references


We thank the Nottingham Arabidopsis Stock Center for seed stocks of SALK T-DNA lines donated by J. Ecker and colleagues. We thank C. Lanz for help with sequencing, and K. Bomblies and Y.L. Guo for help with phylogenetic analysis. We thank K. Bomblies, V. Grbic, Y. Kobayashi, J. Lempe and S. Russell for discussion and critical reading of the manuscript. This work was supported by a European Molecular Biology Organization (EMBO) Long-Term Fellowship to S.B., a US National Institutes of Health (NIH) Postdoctoral Fellowship to T.P.M., an NIH grant (GM62932) to J.C. and D.W., and by the Max Planck Society, of which D.W. is a director. J.C. is a Howard Hughes Medical Institute (HHMI) Investigator.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Detlef Weigel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Markers used for mapping of the early flowering phenotype in Fr-2. (PDF 92 kb)

Supplementary Fig. 2

Flowering behavior of populations segregating for different PHYC alleles. (PDF 91 kb)

Supplementary Fig. 3

Latitudinal cline of PHYC alleles. (PDF 81 kb)

Supplementary Table 1

PHYC haplotypes of A. thaliana strains. (PDF 111 kb)

Supplementary Table 2

ANOVA of latitude by PHYC haplotype group interaction on residual variation in flowering time at 23 °C in short days after accounting for FRI functionality. (PDF 64 kb)

Supplementary Table 3

p-values obtained for different models testing for association with latitude (Latitude), FRI dependent interaction with latitude (Interaction), hypocotyl length under GA treatment (GAHypo) and total leaf number in short days (TLNSD) for 67 markers across 163 strains. (PDF 221 kb)

Supplementary Table 4

p-values obtained for two different models testing for latitudinal association with a completely independent set of markers across 56 strains. (PDF 204 kb)

Supplementary Table 5

Oligonucleotide primers. (PDF 68 kb)

Supplementary Table 6

Strains sequenced for PHYC. (PDF 87 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Balasubramanian, S., Sureshkumar, S., Agrawal, M. et al. The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana. Nat Genet 38, 711–715 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing