Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin

Abstract

The pathogenesis of Bacillus anthracis, the bacterium that causes anthrax, depends on secretion of three factors that combine to form two bipartite toxins. Edema toxin, consisting of protective antigen (PA) and edema factor (EF), causes the edema associated with cutaneous anthrax infections, whereas lethal toxin (LeTx), consisting of PA and lethal factor (LF), is believed to be responsible for causing death in systemic anthrax infections1. EF and LF can be transported by PA into the cytosol of many cell types2. In mouse macrophages, LF can cause rapid necrosis that may be related to the pathology of systemic infections3,4,5. Inbred mouse strains display variable sensitivity to LeTx-induced macrophage necrosis6,7. This trait difference has been mapped to a locus on chromosome 11 named Ltxs1 (refs. 7,8). Here we show that an extremely polymorphic gene in this locus, Nalp1b, is the primary mediator of mouse macrophage susceptibility to LeTx. We also show that LeTx-induced macrophage death requires caspase-1, which is activated in susceptible, but not resistant, macrophages after intoxication, suggesting that Nalp1b directly or indirectly activates caspase-1 in response to LeTx.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: NOD and SJL macrophages are resistant to LeTx despite carrying the Leu578 Kif1c allele, and the trait maps to Ltxs1.
Figure 2: Nalp1b has at least five heavily polymorphic alleles and is the only paralogue expressed in 129S1 macrophages.
Figure 3: A Nalp1b transgene derived from 129S1 renders resistant macrophages fully susceptible to LeTx.
Figure 4: Inhibition of Nalp1b expression renders susceptible macrophages partially resistant to LeTx.
Figure 5: Caspase-1 is activated in susceptible macrophages upon treatment with LeTx and is required for susceptibility.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. 1

    Stephen, J. Anthrax toxin. Pharmacol. Ther. 12, 501–513 (1981).

    CAS  Article  Google Scholar 

  2. 2

    Collier, R.J. & Young, J.A. Anthrax toxin. Annu. Rev. Cell Dev. Biol. 19, 45–70 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Friedlander, A.M. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem. 261, 7123–7126 (1986).

    CAS  PubMed  Google Scholar 

  4. 4

    Hanna, P.C., Kochi, S. & Collier, R.J. Biochemical and physiological changes induced by anthrax lethal toxin in J774 macrophage-like cells. Mol. Biol. Cell 3, 1269–1277 (1992).

    CAS  Article  Google Scholar 

  5. 5

    Hanna, P.C., Acosta, D. & Collier, R.J. On the role of macrophages in anthrax. Proc. Natl. Acad. Sci. USA 90, 10198–10201 (1993).

    CAS  Article  Google Scholar 

  6. 6

    Friedlander, A.M., Bhatnagar, R., Leppla, S.H., Johnson, L. & Singh, Y. Characterization of macrophage sensitivity and resistance to anthrax lethal toxin. Infect. Immun. 61, 245–252 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Roberts, J.E., Watters, J.W., Ballard, J.D. & Dietrich, W.F. Ltx1, a mouse locus that influences the susceptibility of macrophages to cytolysis caused by intoxication with Bacillus anthracis lethal factor, maps to chromosome 11. Mol. Microbiol. 29, 581–591 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Watters, J.W. & Dietrich, W.F. Genetic, physical, and transcript map of the Ltxs1 region of mouse chromosome 11. Genomics 73, 223–231 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Watters, J.W., Dewar, K., Lehoczky, J., Boyartchuk, V. & Dietrich, W.F. Kif1C, a kinesin-like motor protein, mediates mouse macrophage resistance to anthrax lethal factor. Curr. Biol. 11, 1503–1511 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Summerton, J. & Weller, D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 7, 187–195 (1997).

    CAS  Article  Google Scholar 

  11. 11

    Draper, B.W., Morcos, P.A. & Kimmel, C.B. Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30, 154–156 (2001).

    CAS  Article  Google Scholar 

  12. 12

    Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Cordoba-Rodriguez, R., Fang, H., Lankford, C.S. & Frucht, D.M. Anthrax lethal toxin rapidly activates caspase-1/ICE and induces extracellular release of interleukin (IL)-1β and IL-18. J. Biol. Chem. 279, 20563–20566 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Tschopp, J., Martinon, F. & Burns, K. Nalps: a novel protein family involved in inflammation. Nat. Rev. Mol. Cell Biol. 4, 95–104 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Martinon, F., Hofmann, K. & Tschopp, J. The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation. Curr. Biol. 11, R118–R120 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Geddes, B.J. et al. Human CARD12 is a novel CED4/Apaf-1 family member that induces apoptosis. Biochem. Biophys. Res. Commun. 284, 77–82 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Poyet, J.-L. et al. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J. Biol. Chem. 276, 28309–28313 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Brennan, M.A. & Cookson, B.T. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol. 38, 31–40 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Jesenberger, V., Procyk, K.J., Yuan, J., Reipert, S. & Baccarini, M. Salmonella-induced caspase-2 activation in macrophages: a novel mechanism in pathogen-mediated apoptosis. J. Exp. Med. 192, 1035–1045 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Klimpel, K.R., Arora, N. & Leppla, S.H. Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol. Microbiol. 13, 1093–1100 (1994).

    CAS  Article  Google Scholar 

  22. 22

    Vitale, G., Bernardi, L., Napolitani, G., Mock, M. & Montecucco, C. Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem. J. 352, 739–745 (2000).

    CAS  Article  Google Scholar 

  23. 23

    Pellizzari, R., Guidi-Rontani, C., Vitale, G., Mock, M. & Montecucco, C. Anthrax lethal factor cleaves MKK3 in macrophages and inhibits LPS/IFNγ-induced release of NO and TNFα. FEBS Lett. 462, 199–204 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Kim, S.O. et al. Sensitizing anthrax lethal toxin-resistant macrophages to lethal toxin-induced killing by tumor necrosis factor-α. J. Biol. Chem. 278, 7413–7421 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Menard, A., Papini, E., Mock, M. & Montecucco, C. The cytotoxic activity of Bacillus anthracis lethal factor is inhibited by leukotriene A4 hydrolase and metallopeptidase inhibitors. Biochem. J. 320, 687–691 (1996).

    CAS  Article  Google Scholar 

  26. 26

    Growney, J.D. & Dietrich, W.F. High-resolution genetic and physical map of the Lgn1 interval in C57BL/6J implicates Naip2 or Naip5 in Legionella pneumophila pathogenesis. Genome Res. 10, 1158–1171 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Yui, M.A. et al. Production of congenic mouse strains carrying NOD-derived diabetogenic genetic intervals: an approach for the genetic dissection of complex traits. Mamm. Genome 7, 331–334 (1996).

    CAS  Article  Google Scholar 

  28. 28

    Reifsnyder, P.C. et al. Genotypic and phenotypic characterization of six new recombinant congenic strains derived from NOD/Shi and CBA/J genomes. Mamm. Genome 10, 161–167 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Svenson, K.L. et al. Strain distribution pattern for SSLP markers in the SWXJ recombinant inbred strain set: chromosomes 1 to 6. Mamm. Genome 6, 867–872 (1995).

    CAS  Article  Google Scholar 

  30. 30

    Shultz, K.L., Svenson, K.L., Cheah, Y.-C., Paigen, B. & Beamer, W.G. Strain distribution pattern for SSLP markers in the SWXJ recombinant inbred strain set: chromosomes 7 to X. Mamm. Genome 7, 526–532 (1996).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Abney, S. Goodart, E. Kazyanskaya, K. McAuliffe and K. Sadigh for technical assistance; J. Watters and members of the Dietrich laboratory for helpful discussion and S. Boyden, L. Boyden, N. Andrews, F. Ausubel, L. Kunkel and R. Mosher for critical reading of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to William F Dietrich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Translated sequence alignment of Nalp1b alleles 1–5. (PDF 74 kb)

Supplementary Table 1

Primer and morpholino sequences. (PDF 71 kb)

Supplementary Note (PDF 1855 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boyden, E., Dietrich, W. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38, 240–244 (2006). https://doi.org/10.1038/ng1724

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing