Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strategies for dissecting epigenetic mechanisms in the mouse

Abstract

Epigenetics generally refers to heritable changes in gene expression that are independent of nucleotide sequence. With complete genome sequences in hand, understanding the epigenetic control of genomes is the next step towards comprehending how the same DNA sequence gives rise to different cells, lineages and organs. Epigenetics also contributes to individual variation in normal biology and in disease states. The mouse provides a unique opportunity to understand how epigenetic differences contribute to both development and disease in a tractable mammalian system. Here we discuss current approaches and protocols used to study epigenetics in the mouse, including loss-of-function studies, mutagenesis screens, somatic cell nuclear transfer, genomics and proteomics.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Developmentally defined epigenetic events.
Figure 2: Current assays for epigenetic analysis.
Figure 3: Summary of protocols used in epigenome analysis.

References

  1. Waddington, C. The epigenotype. Endeavor 1, 18–20 (1942).

    Google Scholar 

  2. Cowell, I.G. et al. Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111, 22–36 (2002).

    CAS  Article  PubMed  Google Scholar 

  3. Sun, Z.W. & Allis, C.D. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418, 104–108 (2002).

    CAS  Article  PubMed  Google Scholar 

  4. Costanzi, C. & Pehrson, J.R. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393, 599–601 (1998).

    CAS  Article  PubMed  Google Scholar 

  5. Sarma, K. & Reinberg, D. Histone variants meet their match. Nat. Rev. Mol. Cell Biol. 6, 139–149 (2005).

    CAS  Article  PubMed  Google Scholar 

  6. Luger, K. Structure and dynamic behavior of nucleosomes. Curr. Opin. Genet. Dev. 13, 127–135 (2003).

    CAS  Article  PubMed  Google Scholar 

  7. Zheng, C. & Hayes, J.J. Structures and interactions of the core histone tail domains. Biopolymers 68, 539–546 (2003).

    CAS  Article  PubMed  Google Scholar 

  8. Labrador, M. & Corces, V.G. Setting the boundaries of chromatin domains and nuclear organization. Cell 111, 151–154 (2002).

    CAS  Article  PubMed  Google Scholar 

  9. Goetze, S. et al. Performance of genomic bordering elements at predefined genomic loci. Mol. Cell. Biol. 25, 2260–2272 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Rousseaux, S. et al. Establishment of male-specific epigenetic information. Gene 345, 139–153 (2005).

    CAS  Article  PubMed  Google Scholar 

  11. Rangwala, S.H. & Richards, E.J. The value-added genome: building and maintaining genomic cytosine methylation landscapes. Curr. Opin. Genet. Dev. 14, 686–691 (2004).

    CAS  Article  PubMed  Google Scholar 

  12. Chen, T. & Li, E. Structure and function of eukaryotic DNA methyltransferases. Curr. Top. Dev. Biol. 60, 55–89 (2004).

    CAS  Article  PubMed  Google Scholar 

  13. Hendrich, B. & Tweedie, S. The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet. 19, 269–277 (2003).

    CAS  Article  PubMed  Google Scholar 

  14. Jorgensen, H.F. & Bird, A. MeCP2 and other methyl-CpG binding proteins. Ment. Retard. Dev. Disabil. Res. Rev. 8, 87–93 (2002).

    Article  PubMed  Google Scholar 

  15. Nakao, M. et al. Regulation of transcription and chromatin by methyl-CpG binding protein MBD1. Brain Dev. 23 Suppl 1, S174–S176 (2001).

    Article  PubMed  Google Scholar 

  16. Henikoff, S., Furuyama, T. & Ahmad, K. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet. 20, 320–326 (2004).

    CAS  Article  PubMed  Google Scholar 

  17. Bell, A.C., West, A.G. & Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98, 387–396 (1999).

    CAS  Article  PubMed  Google Scholar 

  18. West, A.G., Huang, S., Gaszner, M., Litt, M.D. & Felsenfeld, G. Recruitment of histone modifications by USF proteins at a vertebrate barrier element. Mol. Cell 16, 453–463 (2004).

    CAS  Article  PubMed  Google Scholar 

  19. Gebuhr, T.C., Bultman, S.J. & Magnuson, T. Pc-G/trx-G and the SWI/SNF connection: developmental gene regulation through chromatin remodeling. Genesis 26, 189–197 (2000).

    CAS  Article  PubMed  Google Scholar 

  20. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).

    CAS  Article  PubMed  Google Scholar 

  21. Mager, J., Montgomery, N.D., de Villena, F.P. & Magnuson, T. Genome imprinting regulated by the mouse Polycomb group protein Eed. Nat. Genet. 33, 502–507 (2003).

    CAS  Article  PubMed  Google Scholar 

  22. Wang, J. et al. Imprinted X inactivation maintained by a mouse Polycomb group gene. Nat. Genet. 28, 371–375 (2001).

    CAS  Article  PubMed  Google Scholar 

  23. Hernandez-Munoz, I. et al. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc. Natl. Acad. Sci. USA 102, 7635–7640 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Huttenhofer, A., Schattner, P. & Polacek, N. Non-coding RNAs: hope or hype? Trends Genet. 21, 289–297 (2005).

    Article  PubMed  Google Scholar 

  25. Roberts, E. & Quisenberry, J.H. Linkage of the genes for non-yellow (y) and pink-eye (p2) in the house mouse (Mus musculus). Am. Nat. 69, 181–183 (1935).

    Article  Google Scholar 

  26. Vasicek, T.J. et al. Two dominant mutations in the mouse fused gene are the result of transposon insertions. Genetics 147, 777–786 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Michaud, E.J. et al. Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev. 8, 1463–1472 (1994).

    CAS  Article  PubMed  Google Scholar 

  28. Rakyan, V. & Whitelaw, E. Transgenerational epigenetic inheritance. Curr. Biol. 13, R6 (2003).

    CAS  Article  PubMed  Google Scholar 

  29. Li, E., Bestor, T.H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    CAS  Article  PubMed  Google Scholar 

  30. Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 (1993).

    CAS  Article  PubMed  Google Scholar 

  31. Sado, T. et al. X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev. Biol. 225, 294–303 (2000).

    CAS  Article  PubMed  Google Scholar 

  32. Okano, M., Bell, D.W., Haber, D.A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    CAS  Article  PubMed  Google Scholar 

  33. Bourc'his, D., Xu, G.L., Lin, C.S., Bollman, B. & Bestor, T.H. Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539 (2001).

    CAS  Article  PubMed  Google Scholar 

  34. Kaneda, M. et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429, 900–903 (2004).

    CAS  Article  PubMed  Google Scholar 

  35. Guy, J., Hendrich, B., Holmes, M., Martin, J.E. & Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 27, 322–326 (2001).

    CAS  Article  PubMed  Google Scholar 

  36. Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V.A. & Bird, A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 15, 710–723 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Hutchins, A.S. et al. Gene silencing quantitatively controls the function of a developmental trans-activator. Mol. Cell 10, 81–91 (2002).

    CAS  Article  PubMed  Google Scholar 

  38. Horike, S., Cai, S., Miyano, M., Cheng, J.F. & Kohwi-Shigematsu, T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat. Genet. 37, 31–40 (2005).

    CAS  Article  PubMed  Google Scholar 

  39. Hemann, M.T. et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat. Genet. 33, 396–400 (2003).

    CAS  Article  PubMed  Google Scholar 

  40. Kunath, T. et al. Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nat. Biotechnol. 21, 559–561 (2003).

    CAS  Article  PubMed  Google Scholar 

  41. Fedoriw, A.M., Stein, P., Svoboda, P., Schultz, R.M. & Bartolomei, M.S. Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting. Science 303, 238–240 (2004).

    CAS  Article  PubMed  Google Scholar 

  42. Engel, N., West, A.G., Felsenfeld, G. & Bartolomei, M.S. Antagonism between DNA hypermethylation and enhancer-blocking activity at the H19 DMD is uncovered by CpG mutations. Nat. Genet. 36, 883–888 (2004).

    CAS  Article  PubMed  Google Scholar 

  43. Schoenherr, C.J., Levorse, J.M. & Tilghman, S.M. CTCF maintains differential methylation at the Igf2/H19 locus. Nat. Genet. 33, 66–69 (2003).

    CAS  Article  PubMed  Google Scholar 

  44. Russell, L.B. & Bangham, J.W. The paternal genome in mouse zygotes is less sensitive to ENU mutagenesis than the maternal genome. Mutat. Res. 248, 203–209 (1991).

    CAS  Article  PubMed  Google Scholar 

  45. Rinchik, E.M., Tonjes, R.R., Paul, D. & Potter, M.D. Molecular analysis of radiation-induced albino (c)-locus mutations that cause death at preimplantation stages of development. Genetics 135, 1107–1116 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Blewitt, M.E. et al. An N-ethyl-N-nitrosourea screen for genes involved in variegation in the mouse. Proc. Natl. Acad. Sci. USA 102, 7629–7634 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Carpenter, A.E. & Sabatini, D.M. Systematic genome-wide screens of gene function. Nat. Rev. Genet. 5, 11–22 (2004).

    CAS  Article  PubMed  Google Scholar 

  48. Austin, C.P. et al. The knockout mouse project. Nat. Genet. 36, 921–924 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Wang, Y. et al. Beyond the double helix: writing and reading the histone code. Novartis Found. Symp. 259, 3–17; discussion 17–21, 163–169 (2004).

    CAS  PubMed  Google Scholar 

  50. Umlauf, D. et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat. Genet. 36, 1296–1300 (2004).

    CAS  Article  PubMed  Google Scholar 

  51. Roh, T.Y., Ngau, W.C., Cui, K., Landsman, D. & Zhao, K. High-resolution genome-wide mapping of histone modifications. Nat. Biotechnol. 22, 1013–1016 (2004).

    CAS  Article  PubMed  Google Scholar 

  52. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    CAS  Article  PubMed  Google Scholar 

  53. Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active β-globin locus. Mol. Cell 10, 1453–1465 (2002).

    CAS  Article  PubMed  Google Scholar 

  54. Murrell, A., Heeson, S. & Reik, W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat. Genet. 36, 889–893 (2004).

    CAS  Article  PubMed  Google Scholar 

  55. Bolzer, A. et al. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 3, e157 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Eggan, K. et al. Mice cloned from olfactory sensory neurons. Nature 428, 44–49 (2004).

    CAS  Article  PubMed  Google Scholar 

  57. Li, J., Ishii, T., Feinstein, P. & Mombaerts, P. Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature 428, 393–399 (2004).

    CAS  Article  PubMed  Google Scholar 

  58. Mann, M.R. et al. Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol. Reprod. 69, 902–914 (2003).

    CAS  Article  PubMed  Google Scholar 

  59. Boiani, M., Eckardt, S., Scholer, H.R. & McLaughlin, K.J. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev. 16, 1209–1219 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Ogonuki, N. et al. Early death of mice cloned from somatic cells. Nat. Genet. 30, 253–254 (2002).

    CAS  Article  PubMed  Google Scholar 

  61. Eggan, K. et al. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc. Natl. Acad. Sci. USA 98, 6209–6214 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Murrell, A., Rakyan, V.K. & Beck, S. From genome to epigenome. Hum. Mol. Genet. 14 Suppl 1, R3–R10 (2005).

    CAS  Article  PubMed  Google Scholar 

  63. Costello, J.F. et al. Aberrant CpG-island methylation has non-random and tumor-type-specific patterns. Nat. Genet. 24, 132–138 (2000).

    CAS  Article  PubMed  Google Scholar 

  64. Grunau, C., Hindermann, W. & Rosenthal, A. Large-scale methylation analysis of human genomic DNA reveals tissue-specific differences between the methylation profiles of genes and pseudogenes. Hum. Mol. Genet. 9, 2651–2663 (2000).

    CAS  Article  PubMed  Google Scholar 

  65. Rakyan, V.K. et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol. 2, e405 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Song, F. et al. Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc. Natl. Acad. Sci. USA 102, 3336–3341 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Buck, M.J. & Lieb, J.D. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83, 349–360 (2004).

    CAS  Article  PubMed  Google Scholar 

  68. Taverner, N.V., Smith, J.C. & Wardle, F.C. Identifying transcriptional targets. Genome Biol. 5, 210 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bernstein, B.E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).

    CAS  Article  PubMed  Google Scholar 

  70. Martens, J.H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Mockler, T.C. & Ecker, J.R. Applications of DNA tiling arrays for whole-genome analysis. Genomics 85, 1–15 (2005).

    CAS  Article  PubMed  Google Scholar 

  72. Bertone, P. et al. Global identification of human transcribed sequences with genome tiling arrays. Science 306, 2242–2246 (2004).

    CAS  Article  PubMed  Google Scholar 

  73. Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).

    CAS  Article  PubMed  Google Scholar 

  74. Yamada, K. et al. Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302, 842–846 (2003).

    CAS  Article  PubMed  Google Scholar 

  75. Jiao, Y. et al. A tiling microarray expression analysis of rice chromosome 4 suggests a chromosome-level regulation of transcription. Plant Cell 17, 1641–1657 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Bultman and T. Magnuson for communication of unpublished results; D. Barlow and T. Jenuwein for discussion of European-based initiatives in epigenetics; and S. Reiner and members of the laboratory for critical reading of the manuscript. We apologize to those authors whose primary work could not be referenced owing to space limitations. This work was supported by the US National Institutes of Health and the Howard Hughes Medical Institute. J.M. is supported by the Damon Runyon Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa S Bartolomei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mager, J., Bartolomei, M. Strategies for dissecting epigenetic mechanisms in the mouse. Nat Genet 37, 1194–1200 (2005). https://doi.org/10.1038/ng1664

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1664

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing