Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recombination of mitochondrial DNA in skeletal muscle of individuals with multiple mitochondrial DNA heteroplasmy


Experimental evidence for human mitochondrial DNA (mtDNA) recombination was recently obtained in an individual with paternal inheritance of mtDNA1 and in an in vitro cell culture system2. Whether mtDNA recombination is a common event in humans remained to be determined. To detect mtDNA recombination in human skeletal muscle, we analyzed the distribution of alleles in individuals with multiple mtDNA heteroplasmy using single-cell PCR and allele-specific PCR. In all ten individuals who carried a heteroplasmic D-loop mutation and a distantly located tRNA point mutation or a large deletion, we observed a mixture of four allelic combinations (tetraplasmy), a hallmark of recombination. Twelve of 14 individuals with closely located heteroplasmic D-loop mutation pairs contained a mixture of only three types of mitochondrial genomes (triplasmy), consistent with the absence of recombination between adjacent markers. These findings indicate that mtDNA recombination is common in human skeletal muscle.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Tetraplasmic allelic distributions of double heteroplasmic mutations in individuals p1–p4 prove the presence of recombination.
Figure 2: Tetraplasmic distribution of alleles is confirmed using pre-PCR separation by gel electrophoresis, which is not subject to PCR artifacts.
Figure 3: Cosegregation of closely spaced alleles in skeletal muscle of double heteroplasmic individuals argues against recurrence of mutations.


  1. Kraytsberg, Y. et al. Recombination of human mitochondrial DNA. Science 304, 981 (2004).

    Article  CAS  Google Scholar 

  2. D'Aurelio, M. et al. Heterologous mitochondrial DNA recombination in human cells. Hum. Mol. Genet. 13, 3171–3179 (2004).

    Article  CAS  Google Scholar 

  3. Rokas, A., Ladoukakis, E. & Zouros, E. Animal mitochondrial DNA recombination revisited. Trends Ecol. Evol. 18, 411–417 (2003).

    Article  Google Scholar 

  4. Awadalla, P., Eyre-Walker, A. & Smith, J.M. Linkage disequilibrium and recombination in hominid mitochondrial DNA. Science 286, 2524–2525 (1999).

    Article  CAS  Google Scholar 

  5. Arctander, P. Mitochondrial recombination? Science 284, 2090–2091 (1999).

    Article  CAS  Google Scholar 

  6. Merriweather, D.A. & Kaestle, F.A. Mitochondrial recombination? (continued). Science 285, 837 (1999).

    Article  CAS  Google Scholar 

  7. Kivisild, T. & Villems, R. Questioning evidence for recombination in human mitochondrial DNA. Science 288, 1931 (2000).

    Article  CAS  Google Scholar 

  8. Jorde, L.B. & Bamshad, M. Questioning evidence for recombination in human mitochondrial DNA. Science 288, 1931 (2000).

    Article  CAS  Google Scholar 

  9. Kumar, S., Hedrick, P., Dowling, T. & Stoneking, M. Questioning evidence for recombination in human mitochondrial DNA. Science 288, 1931 (2000).

    Article  CAS  Google Scholar 

  10. Parsons, T.J. & Irwin, J.A. Questioning evidence for recombination in human mitochondrial DNA. Science 288, 1931 (2000).

    Article  CAS  Google Scholar 

  11. Elson, J.L. et al. Analysis of European mtDNAs for recombination. Am. J. Hum. Genet. 68, 145–153 (2001).

    Article  CAS  Google Scholar 

  12. Herrnstadt, C. et al. Reduced-median-network analysis of complete mitochondrial DNA coding-region sequences for the major African, Asian, and European haplogroups. Am. J. Hum. Genet. 70, 1152–1171 (2002).

    Article  CAS  Google Scholar 

  13. Smith, J.M. & Smith, N.H. Recombination in animal mitochondrial DNA. Mol. Biol. Evol. 19, 2330–2332 (2002).

    Article  CAS  Google Scholar 

  14. Hagelberg, E. Recombination or mutation rate heterogeneity? Implications for Mitochondrial Eve. Trends Genet. 19, 84–90 (2003).

    Article  CAS  Google Scholar 

  15. Sato, A. et al. Rare creation of recombinant mtDNA haplotypes in mammalian tissues. Proc. Natl. Acad. Sci. USA 102, 6057–6062 (2005).

    Article  CAS  Google Scholar 

  16. Schwartz, M. & Vissing, J.N. Paternal inheritance of mitochondrial DNA. N. Engl. J. Med. 347, 576–580 (2002).

    Article  Google Scholar 

  17. Filosto, M. et al. Lack of paternal inheritance of muscle mitochondrial DNA in sporadic mitochondrial myopathies. Ann. Neurol. 54, 524–526 (2003).

    Article  CAS  Google Scholar 

  18. Schwartz, M. & Vissing, J. No evidence for paternal inheritance of mtDNA in patients with sporadic mtDNA mutations. J. Neurol. Sci. 218, 99–101 (2004).

    Article  CAS  Google Scholar 

  19. Coller, H.A. et al. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat. Genet. 28, 147–150 (2001).

    Article  CAS  Google Scholar 

  20. Pääbo, S., Irwin, D.M. & Wilson, A.C. DNA damage promotes jumping between templates during enzymatic amplification. J. Biol. Chem. 265, 4718–4721 (1990).

    PubMed  Google Scholar 

  21. Nekhaeva, E. et al. Clonally expanded mtDNA point mutations are abundant in individual cells of human tissues. Proc. Natl. Acad. Sci. USA 99, 5521–5526 (2002).

    Article  CAS  Google Scholar 

  22. Khrapko, K., Nekhaeva, E., Kraytsberg, Y. & Kunz, W. Clonal expansions of mitochondrial genomes: implications for in vivo mutational spectra. Mutat. Res. 522, 13–19 (2003).

    Article  CAS  Google Scholar 

  23. Ohno, K. et al. MELAS- and Kearns-Sayre-type co-mutation with myopathy and autoimmune polyendocrinopathy. Ann. Neurol. 39, 761–766 (1996).

    Article  CAS  Google Scholar 

  24. Bidooki, S.K., Johnson, M.A., Chrzanowska-Lightowlers, Z., Bindoff, L.A. & Lightowlers, R.N. Intracellular mitochondrial triplasmy in a patient with two heteroplasmic base changes. Am. J. Hum. Genet. 60, 1430–1438 (1997).

    Article  CAS  Google Scholar 

  25. Zsurka, G. et al. Tissue dependent co-segregation of the novel pathogenic G12276A mitochondrial tRNALeu(CUN) mutation with the A185G D-loop polymorphism. J. Med. Genet. 41, e124 (2004).

    Article  CAS  Google Scholar 

  26. Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

    Article  CAS  Google Scholar 

Download references


We thank A. de Grey for his comments on the manuscript and U. Strube for technical assistance. This study was supported by research grants of the Deutsche Forschungsgemeinschaft and the Bundesministerium für Bildung und Forschung to W.S.K. and by grants from the US National Institutes of Health to K.K.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Konstantin Khrapko or Wolfram S Kunz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Schematic representation of positions of deletions, D-loop point mutations and used PCR primers. (PDF 64 kb)

Supplementary Fig. 2

Comparison of mtDNA heteroplasmy determined by SYBR Green staining and radioactive detection ('last cycle hot' PCR). (PDF 13 kb)

Supplementary Fig. 3

Purity of agarose gel electrophoresis-separated genomic DNA samples determined by multiplex PCR. (PDF 81 kb)

Supplementary Table 1

Comparison of D-loop mutant loads as determined in allele-specific PCR products and gel-separated DNA fractions. (PDF 23 kb)

Supplementary Table 2

Frequency of heteroplasmic D-loop mutations in post-mitotic tissues. (PDF 8 kb)

Supplementary Table 3

Overview of patients with multiple heteroplasmic mutations in the coding region and the D-loop. (PDF 8 kb)

Supplementary Table 4

Primer sequences and mutation detection. (PDF 15 kb)

Supplementary Note

Proof of the in vivo origin of allelic tetraplasmy. (PDF 10 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zsurka, G., Kraytsberg, Y., Kudina, T. et al. Recombination of mitochondrial DNA in skeletal muscle of individuals with multiple mitochondrial DNA heteroplasmy. Nat Genet 37, 873–877 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing