Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Mining for regulatory programs in the cancer transcriptome

Abstract

DNA microarrays have been widely applied to cancer transcriptome analysis. The Oncomine database contains a large collection of such data, as well as hundreds of derived gene-expression signatures. We studied the regulatory mechanisms responsible for gene deregulation in these cancer signatures by searching for the coordinate regulation of genes with common transcription factor binding sites. We found that genes with binding sites for the archetypal cancer transcription factor, E2F, were disproportionately overexpressed in a wide variety of cancers, whereas genes with binding sites for other transcription factors, such as Myc-Max, c-Rel and ATF, were disproportionately overexpressed in specific cancer types. These results suggest that alterations in pathways activating these transcription factors may be responsible for the observed gene deregulation and cancer pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the method used to elucidate CRPs.
Figure 2: Regulatory programs encoded in gene-expression signatures.

Similar content being viewed by others

References

  1. Ramaswamy, S., Ross, K.N., Lander, E.S. & Golub, T.R. A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33, 49–54 (2003).

    Article  CAS  Google Scholar 

  2. Rhodes, D.R. et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc. Natl. Acad. Sci. USA 101, 9309–9314 (2004).

    Article  CAS  Google Scholar 

  3. Segal, E., Friedman, N., Koller, D. & Regev, A. A module map showing conditional activity of expression modules in cancer. Nat. Genet. 36, 1090–1098 (2004).

    Article  CAS  Google Scholar 

  4. Elkon, R., Linhart, C., Sharan, R., Shamir, R. & Shiloh, Y. Genome-wide in silico identification of transcriptional regulators controlling the cell cycle in human cells. Genome Res. 13, 773–780 (2003).

    Article  CAS  Google Scholar 

  5. Rhodes, D.R. et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1–6 (2004).

    Article  CAS  Google Scholar 

  6. Matys, V. et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 31, 374–378 (2003).

    Article  CAS  Google Scholar 

  7. Sladek, F.M., Zhong, W.M., Lai, E. & Darnell, J.E. Jr. Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes Dev. 4, 2353–2365 (1990).

    Article  CAS  Google Scholar 

  8. Xanthopoulos, K.G. et al. The different tissue transcription patterns of gene for HNF-1, C/EBP, HNF-3, and HNF-4, protein factors that govern liver-specific transcription. Proc. Natl. Acad. Sci. USA 88, 3807–3811 (1991).

    Article  CAS  Google Scholar 

  9. Black, B.L. & Olson, E.N. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol. 14, 167–196 (1998).

    Article  CAS  Google Scholar 

  10. O'Donovan, K.J., Tourtellotte, W.G., Millbrandt, J. & Baraban, J.M. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci. 22, 167–173 (1999).

    Article  CAS  Google Scholar 

  11. Taniguchi, T., Ogasawara, K., Takaoka, A. & Tanaka, N. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 19, 623–655 (2001).

    Article  CAS  Google Scholar 

  12. Caamano, J. & Hunter, C.A. NF-kappaB family of transcription factors: central regulators of innate and adaptive immune functions. Clin. Microbiol. Rev. 15, 414–429 (2002).

    Article  CAS  Google Scholar 

  13. Rosner, M.H. et al. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345, 686–692 (1990).

    Article  CAS  Google Scholar 

  14. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).

    Article  CAS  Google Scholar 

  15. La Thangue, N.B. The yin and yang of E2F-1: balancing life and death. Nat. Cell Biol. 5, 587–589 (2003).

    Article  CAS  Google Scholar 

  16. Zhu, W., Giangrande, P.H. & Nevins, J.R. E2Fs link the control of G1/S and G2/M transcription. EMBO J. 23, 4615–4626 (2004).

    Article  CAS  Google Scholar 

  17. Bracken, A.P. et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22, 5323–5335 (2003).

    Article  CAS  Google Scholar 

  18. Chae, H.D., Yun, J., Bang, Y.J. & Shin, D.Y. Cdk2-dependent phosphorylation of the NF-Y transcription factor is essential for the expression of the cell cycle-regulatory genes and cell cycle G1/S and G2/M transitions. Oncogene 23, 4084–4088 (2004).

    Article  CAS  Google Scholar 

  19. Muller, H. et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 15, 267–285 (2001).

    Article  CAS  Google Scholar 

  20. DeGregori, J., Kowalik, T. & Nevins, J.R. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol. Cell Biol. 15, 4215–4524 (1995).

    Article  CAS  Google Scholar 

  21. Keenan, S.M., Lents, N.H. & Baldassare, J.J. Expression of cyclin E renders cyclin D-CDK4 dispensable for inactivation of the retinoblastoma tumor suppressor protein, activation of E2F, and G1-S phase progression. J. Biol. Chem. 279, 5387–5396 (2004).

    Article  CAS  Google Scholar 

  22. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  Google Scholar 

  23. Kleer, C.G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl. Acad. Sci. USA 100, 11606–11611 (2003).

    Article  CAS  Google Scholar 

  24. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  CAS  Google Scholar 

  25. Gilmore, T.D., Kalaitzidis, D., Liang, M.C. & Starczynowski, D.T. The c-Rel transcription factor and B-cell proliferation: a deal with the devil. Oncogene 23, 2275–2286 (2004).

    Article  CAS  Google Scholar 

  26. Houldsworth, J. et al. Relationship between REL amplification, REL function, and clinical and biologic features in diffuse large B-cell lymphomas. Blood 103, 1862–1868 (2004).

    Article  CAS  Google Scholar 

  27. Lossos, I.S. et al. Transformation of follicular lymphoma to diffuse large-cell lymphoma: alternative patterns with increased or decreased expression of c-myc and its regulated genes. Proc. Natl. Acad. Sci. USA 99, 8886–8891 (2002).

    Article  CAS  Google Scholar 

  28. Nau, M.M. et al. L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature 318, 69–73 (1985).

    Article  CAS  Google Scholar 

  29. Wong, A.J. et al. Gene amplification of c-myc and N-myc in small cell carcinoma of the lung. Science 233, 461–464 (1986).

    Article  CAS  Google Scholar 

  30. Zucman, J. et al. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat. Genet. 4, 341–345 (1993).

    Article  CAS  Google Scholar 

  31. Jean, D. & Bar-Eli, M. Targeting the ATF-1/CREB transcription factors by single chain Fv fragment in human melanoma: potential modality for cancer therapy. Crit. Rev. Immunol. 21, 275–286 (2001).

    Article  CAS  Google Scholar 

  32. Johnson, D.G., Cress, W.D., Jakoi, L. & Nevins, J.R. Oncogenic capacity of the E2F1 gene. Proc. Natl. Acad. Sci. USA 91, 12823–12827 (1994).

    Article  CAS  Google Scholar 

  33. Schwab, M., Varmus, H.E. & Bishop, J.M. Human N-myc gene contributes to neoplastic transformation of mammalian cells in culture. Nature 316, 160–162 (1985).

    Article  CAS  Google Scholar 

  34. Sylla, B.S. & Temin, H.M. Activation of oncogenicity of the c-rel proto-oncogene. Mol. Cell Biol. 6, 4709–4716 (1986).

    Article  CAS  Google Scholar 

  35. Seth, A. & Papas, T.S. The c-ets-1 proto-oncogene has oncogenic activity and is positively autoregulated. Oncogene 5, 1761–1767 (1990).

    CAS  PubMed  Google Scholar 

  36. Lamb, J. et al. A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 114, 323–334 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Gibbs for hardware support and R. Varambally for database support. This research is supported in part by the National Institutes of Health through the University of Michigan's Cancer Center Support Grant, pilot funds from the Dean's Office and the Department of Pathology. D.R.R. was supported by the Medical Scientist Training Program and the Cancer Biology Training Program, and A.M.C. is a Pew Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arul M Chinnaiyan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

CREB1 and ATF5 are over-expressed with the CREB-ATF CRP. (PDF 692 kb)

Supplementary Table 1

Gene expression signatures. (PDF 104 kb)

Supplementary Table 2

Putative regulatory signatures. (PDF 71 kb)

Supplementary Table 3

All conditional regulatory programs — all. (XLS 1187 kb)

Supplementary Table 4

'Normal vs. Normal' conditional regulatory programs. (PDF 69 kb)

Supplementary Table 5

'Cancer vs. Normal' conditional regulatory programs. (PDF 71 kb)

Supplementary Table 6

'Cancer vs. Cancer' conditional regulatory programs. (PDF 72 kb)

Supplementary Table 7

In vitro E2F signature analysis. (PDF 92 kb)

Supplementary Table 8

Transcription factors over-expressed with CRPs. (PDF 80 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhodes, D., Kalyana-Sundaram, S., Mahavisno, V. et al. Mining for regulatory programs in the cancer transcriptome. Nat Genet 37, 579–583 (2005). https://doi.org/10.1038/ng1578

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1578

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing