Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Keratin 13 point mutation underlies the hereditary mucosal epithelia disorder white sponge nevus

Abstract

Although pathogenic keratin mutations have been well characterized in inherited epidermal disorders, analogous defects in keratins expressed in non-epidermal epithelia have yet to be described. White sponge nevus (WSN) is a rare autosomal dominant disorder of non-cornifying squamous epithelial differentiation that presents clinically as bilateral white, soft, thick plaques of the oral mucosa. Less frequently the mucous membranes of the nose, esophagus, genitalia and rectum are involved1,2. Histopathological features, including epithelial thickening, parakeratosis, extensive vacuolization of the suprabasal keratinocytes2 and compact aggregates of keratin intermediate filaments (KIF) in the upper spinous layers3,4, resemble those found in epidermal disorders due to keratin defects. We analysed a multigenerational family with WSN and found cosegregation of the disease with the keratin gene cluster on chromosome 17. We identified a missense mutation in one allele of keratin 13 that leads to proline substitution for a conserved leucine. The mutation occurred within the conserved 1A region of the helical rod domain, which is critical for KIF stability and is the site of most pathogenic keratin mutations. This mutation enlarges the spectrum of keratins with disease-causing defects to include mucosally expressed keratin 13, and extends the known keratin diseases to disorders of non-cornifying stratified squamous epithelia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jorgenson, R.J. & Levin, L.S. White sponge nevus. Arch. Dermatol. 117, 73–76 (1981).

    Article  CAS  Google Scholar 

  2. Metz, J. & Metz, G. Der, Naevus spongiosus albus mucosae-Übersicht und eigene Beobachtungen. Z. Hautkr. 54, 604–612 (1979).

    CAS  PubMed  Google Scholar 

  3. Frithiof, L & Bánóoczy, J. White sponge nevus (leukoedema exfoliativum mucosae oris): Ultrastructural observations. Oral Surg. 41, 607–622 (1976).

    Article  CAS  Google Scholar 

  4. Morris, R., Gansler, T.S., Rudisill, M.T. & Neville, B. White sponge nevus. Diagnosis by light microscopic and Ultrastructural cytology. Acta Cytol. 32, 357–361 (1988).

    CAS  PubMed  Google Scholar 

  5. Parry, D.A.D. & Steinert, P.M. Intermediate filament structure. (R.G. Landes Company, Austin, 1995).

  6. McLean, W.H.I. & Lane, B. Intermediate filaments in disease. Curr. Opin. Cell Biol. 7, 118–125 (1995).

    Article  CAS  Google Scholar 

  7. Anneroth, G., Isacsson, G., Lagerholm, B., Lindvall, A. & Thyresson, N. Pachyonychia congenita. A clinical, histological and microradiographic study with special reference to oral manifestations. Acta Derm. Venereol. (Stockh) 55, 387 (1975).

    CAS  Google Scholar 

  8. McLean, W.H.I. et al. Keratin 16 and keratin 17 mutations cause pachyonychia congenita. Nature Genet. 9, 273–278 (1995).

    Article  CAS  Google Scholar 

  9. Bowden, P.E., Haley, J.L., Kansky, A., Rothnagel, J.A., Jones, D.O. & Turner, R.J. Mutation of a type II keratin gene (K6a) in pachyonychia congenita. Nature Genet. 10, 363–365 (1995).

    Article  CAS  Google Scholar 

  10. Moll, R., Franke, W.W. & Schiller, D.L. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31, 11–24 (1982).

    Article  CAS  Google Scholar 

  11. Lindberg, K. & Rheinwald, J.G. Three distinct keratinocyte subtypes identified in human oral epithelium by their patterns of keratin expression in culture and in xenografts. Differentiation 45, 230–241 (1990).

    Article  CAS  Google Scholar 

  12. Yoon, S.J. et al. Organization of the human kertain type II gene cluster at 12q13. Genomics 24, 502–508 (1994).

    Article  CAS  Google Scholar 

  13. Albertsen, H.M. et al. A physical map and candidate genes in the BRCA1 region on chromosome 17q12–q21. Nature Genet. 7, 472–479 (1994).

    Article  CAS  Google Scholar 

  14. Rosenberg, M., RayChaudhury, A., Shows, T.B., Le Beau, M.M. & Fuchs, E. A group of type I keratin genes on human chromosome 17: Characterization and expression. Molec. cell. Biol. 8, 722–736 (1988).

    Article  CAS  Google Scholar 

  15. Romano, V. et al. Chromosomal mapping of human cytokeratin 13 gene (KRT13). Genomics 14, 495–97 (1992).

    Article  CAS  Google Scholar 

  16. Rothnagel, J.A. et al. Mutations in the 1A domain of keratin 9 in patients with epidermolytic palmoplantar keratoderma. J. invest. Dermatol. 104, 430–433 (1995).

    Article  CAS  Google Scholar 

  17. Rothnagel, J.A. et al. Mutations in the rod domains of keratins 1 and 10 in epidermolytic hyperkeratosis. Science 257, 1128–1130 (1990).

    Article  Google Scholar 

  18. Letai, A. et al. 90, 3197–3201 (1993).

  19. Steinert, P.M., Yang, J.M., Bale, S.J. & Compton, J.G. Concurrence between the molecular overlap regions in keratin intermediate filaments and the locations of keratin mutations in genodermatoses. Biochem. biophys. Res. Commun. 197, 840–848 (1993).

    Article  CAS  Google Scholar 

  20. Rugg, E.L. et al. A mutation in the mucosal keratin K4 is associated with oral white sponge nevus. Nature Genet. 11, 450–452.

    Article  CAS  Google Scholar 

  21. Richards, B. et al. Multiplex PCR amplification from the CFTR gene using DNA prepared from buccal brushes/swabs. Hum. Molec. Genet. 2, 159–163 (1993).

    Article  CAS  Google Scholar 

  22. Ott, J. Analysis of human genetic linkage. (Johns Hopkins University Press, Baltimore, 1985).

    Google Scholar 

  23. Richard, G. et al. Fine mapping of the Darier disease locus on chromosome 12q. J. invest. Dermatol. 103, 665–668 (1994).

    Article  CAS  Google Scholar 

  24. Mischke, D., Wachter, E., Hochstrasser, K., Wild, A.G. & Schulz, P. The N-, but not the C-terminal domains of human keratins 13 and 15 are closely related. Nucl. Acids Res. 17, 7984 (1989).

    Article  CAS  Google Scholar 

  25. Steinert, P.M. & Roop, D.R. The structure, complexity and evolution of intermediate filament genes. In Cellular and Molecular Biology of Intermediate Filaments (eds. Goldman, R.D. & Steinert, P.M.) 353–367 (Plenum Press, New York, 1990).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard, G., De Laurenzi, V., Didona, B. et al. Keratin 13 point mutation underlies the hereditary mucosal epithelia disorder white sponge nevus. Nat Genet 11, 453–455 (1995). https://doi.org/10.1038/ng1295-453

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1295-453

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing