Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biological and biomedical implications of the co-evolution of pathogens and their hosts

Abstract

Co-evolution between host and pathogen is, in principle, a powerful determinant of the biology and genetics of infection and disease. Yet co-evolution has proven difficult to demonstrate rigorously in practice, and co-evolutionary thinking is only just beginning to inform medical or veterinary research in any meaningful way, even though it can have a major influence on how genetic variation in biomedically important traits is interpreted. Improving our understanding of the biomedical significance of co-evolution will require changing the way in which we look for it, complementing the phenomenological approach traditionally favored by evolutionary biologists with the exploitation of the extensive data becoming available on the molecular biology and molecular genetics of host–pathogen interactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic representation of co-evolution, emphasizing reciprocity in that changes in allele frequencies due to selection in one species impose selection resulting in changes in allele frequencies in the other.
Figure 2: Allele frequency changes driven by co-evolution.
Figure 3: Evidence for co-evolution.
Figure 4: Illustration of co-evolution between two host populations (blue rectangles) and four pathogen populations (red circles).

References

  1. 1

    Stearns, S.C. Evolution in Health & Disease (Oxford University Press, Oxford, 1999).

    Google Scholar 

  2. 2

    Rainey, P.B., Buckling, A., Kassen, R. & Travisano, M. The emergence and maintenance of diversity: insights from bacterial populations. Trends Microbiol. 15, 243–247 (2000).

    CAS  Google Scholar 

  3. 3

    Thompson, J.N. & Burdon, J.J. Gene-for-gene coevolution between plants and parasites. Nature 360, 121–125 (1992).

    Article  Google Scholar 

  4. 4

    Thompson, J.N. The Coevolutionary Process (University of Chicago Press, Chicago, 1994).

    Book  Google Scholar 

  5. 5

    Flor, H.H. The complementary genic systems in flax and flax rust. Adv. Genet. 8, 29–54 (1956).

    Article  Google Scholar 

  6. 6

    Chao, L., Levin, B.R. & Stewart, F.M. A complex community in a simple habitat: an experimental study with bacteria and phage. Ecology 58, 369–378 (1977).

    Article  Google Scholar 

  7. 7

    Lenski, R.E. & Levin, B.R. Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am. Nat. 125, 585–602 (1985).

    Article  Google Scholar 

  8. 8

    Kniskern, J. & Rausher, M.D. Two modes of host–enemy evolution. Popul. Ecol. 43, 3–14 (2001).

    Article  Google Scholar 

  9. 9

    Little, T.J. The evolutionary significance of parasitism: do parasite-driven dynamics occur ex silico? J. Evol. Biol. 15, 1–9 (2002).

    Article  Google Scholar 

  10. 10

    Satta, Y., Ohuigin, C., Takahata, N. & Klein, J. Intensity of natural selection at the major histocompatibility complex loci. Proc. Natl Acad. Sci. USA 91, 7184–7188 (1994).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Ebert, D. Virulence and local adaptation of a new horizontally transmitted parasite. Science 265, 1084–1086 (1994).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Frank, S.A. Models of parasite virulence. Q. Rev. Biol. 71, 37–78 (1996).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Levin, B.R. The evolution and maintenance of virulence in microparasites. Emerg. Infect. Dis. 2, 93–102 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Mode, C.J. A mathematical model for the coevolution of obligate parasites and their hosts. Evolution 12, 138–165 (1958).

    Article  Google Scholar 

  15. 15

    Hamilton, W.D., Axelrod, R. & Tanese, R. Sexual reproduction as an adaptation to resist parasites (a review). Proc. Natl Acad. Sci. USA 87, 3566–3573 (1990).

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Morand, S., Manning, S.D. & Woolhouse, M.E.J. Parasite–host coevolution and geographic patterns of parasite infectivity and host susceptibility. Proc. R. Soc. Lond. B Biol. Sci. 263, 119–128 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Lively, C.M. & Apanius, V. Genetic diversity in host-parasite interactions. in Ecology of Infectious Diseases in Natural Populations (eds Grenfell, B.T. & Dobson, A.P.) 421–449 (Cambridge University Press, Cambridge, 1995).

    Chapter  Google Scholar 

  18. 18

    Anderson, R.M. & May, R.M. Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, Oxford, 1991).

    Google Scholar 

  19. 19

    Sasaki, A. & Godfray, H.C.J. A model for the coevolution of resistance and virulence in coupled host–parasitoid interactions. Proc. R. Soc. Lond. B Biol. Sci. 266, 455–463 (1999).

    Article  Google Scholar 

  20. 20

    Gandon, S. & Michalakis, Y. Evolution of parasite virulence against qualitative or quantitative resistance. Proc. R. Soc. Lond. B Biol. Sci. 267, 985–990 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Sasaki, A. Host–parasite coevolution in a multilocus gene-for-gene system. Proc. R. Soc. Lond. B Biol. Sci. 267, 2183–2188 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Gandon, S. Local adaptation and the geometry of host–parasite coevolution. Ecol. Lett. 5, 246–256 (2002).

    Article  Google Scholar 

  23. 23

    Kreitman, M. Methods to detect selection in populations with applications to humans. Ann. Rev. Genomics Hum. Genet. 1, 539–559 (2000).

    CAS  Article  Google Scholar 

  24. 24

    Haldane, J.B.S. Disease and evolution. Ric. Sci. 19, 68–76 (1949).

    Google Scholar 

  25. 25

    Fenner, F. & Fantini, B. Biological Control of Vertebrate Pests (CABI Publishing, Wallingford, 1999).

    Google Scholar 

  26. 26

    Lively, C.M. & Dybdahl, M.F. Parasite adaptation to locally common host genotypes. Nature 405, 679–681 (2000).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Dybdahl, M.F. & Lively, C.M. Host–parasite coevolution: evidence for rare advantage and time-lagged selection in a natural population. Evolution 52, 1057–1066 (1998).

    PubMed  Article  Google Scholar 

  28. 28

    de la Torre, J.C. et al. Coevolution of cells and viruses in a persistent infection of foot-and-mouth disease virus in cell culture. J. Virol. 62, 2050–2058 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Braun-Breton, C. & Hofnung, M. In vivo and in vitro functional alterations of the bacteriophage lambda receptor in lamB missense mutants of Escherichia coli K-12. J. Bacteriol. 148, 845–852 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Hofnung, M., Jezierska, A. & Braun-Breton, C. LamB mutations in E. coli K12: growth of lambda host range mutants and effect of nonsense suppressors. Mol. Gen. Genet. 145, 207–213 (1976).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Woolhouse, M.E.J. et al. A centuries-long epidemic of scrapie in British sheep? Trends Microbiol. 6, 67–70 (2001).

    Article  Google Scholar 

  32. 32

    Levin, B.R., Bull, J.J. & Stewart, F.M. The intrinsic rate of increase of HIV/AIDS: epidemiological and evolutionary implications. Math. Biosci. 132, 69–96 (1996).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Lively, C.M. Migration, virulence and the geographic mosaic of adaptation by parasites. Am. Nat. 153, S34–S47 (1999).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Carius, H.J., Little, T.J. & Ebert, D. Genetic variation in a host–parasite association: potential for coevolution and frequency-dependent selection. Evolution 55, 1136–1145 (2001).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Thompson, J.N. Specific hypotheses on the geographical mosaic of coevolution. Am. Nat. 153, S1–S14 (1999).

    Article  Google Scholar 

  36. 36

    Nuismer, S.L., Thompson, J.N. & Gomulkiewicz, R. Gene flow and geographically structured coevolution. Proc. R. Soc. Lond. B Biol. Sci. 266, 605–609 (1998).

    Article  Google Scholar 

  37. 37

    Kraaijeveld, A.R. & Godfray, H.C.J. Geographic patterns in the evolution of resistance and virulence in Drosophila and its parasitoids. Am. Nat. 153, S61–S74 (1999).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Woolhouse, M.E.J. & Webster, J.P. In search of the Red Queen. Parasitol. Today, 16, 506–508 (2000).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Covacci, A., Telford, J.L., Del Giudice, G., Parsonnet, J. & Rappuoli, R. Helicobacter pylori virulence and genetic geography. Science 284, 1328–1333 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Ong, C.K. et al. Evolution of human papillomavirus type 18: an ancient phylogenetic root in Africa and intratype diversity reflect coevolution with human ethnic groups. J. Virol. 67, 6424–6423 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Agostini, H.T., Yanagihara, R., Davis, V., Ryschkewitsch, C.F. & Stoner, G.L. Asian genotypes of JC virus in native Americans and in a Pacific island population: markers of viral evolution and human migration. Proc. Natl Acad. Sci. USA 94, 14542–14546 (1997).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Harvey, P.H. & Pagel, M.D. The Comparative Method in Evolutionary Biology (Oxford University Press, Oxford, 1991).

    Google Scholar 

  43. 43

    Huelsenbeck, J.P., Rannala, B. & Masly, J.P. Accommodating phylogenetic uncertainty in evolutionary studies. Science 288, 2349–2350 (2000).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Webster, J.P. & Davies, C.M. Coevolution and compatibility in the snail-schistosome system. Parasitology 123, S42–S56 (2001).

    Article  Google Scholar 

  45. 45

    Wakelin, D. & Blackwell, J.M. (eds). Genetics of Resistance to Bacterial and Parasitic Infection (Taylor & Francis, London, 1988).

    Google Scholar 

  46. 46

    Hill, A.V.S., Jepson, A., Plebanski, M. & Gilbert, S.C. Genetic analysis of host–parasite coevolution in human malaria. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352, 1317–1325 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Agrawal, A.A. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326 (2001).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Yan, G., Severson, D.W. & Christensen, B.M. Costs and benefits of mosquito refractoriness to malaria parasites: implications for genetic variability of mosquitoes and genetic control of malaria. Evolution 51, 441–450 (1997).

    PubMed  Article  Google Scholar 

  49. 49

    Webster, J.P. & Woolhouse, M.E.J. Cost of resistance: relationship between reduced fertility and increased resistance in a Schistosoma host-parasite system. Proc. R. Soc. Lond. B Biol. Sci. 266, 391–396 (1999).

    Article  Google Scholar 

  50. 50

    Kraaijeveld, A.R. & Godfray, H.C.J. Trade-off between parasitoid resistance and larval competitor ability in Drosophila melanogaster. Nature 389, 278–280 (1997).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Searle, S. & Blackwell, J.M. Evidence for a functional-repeat polymorphism in the promoter of human NRAMP1 gene that correlates with autoimmune versus infectious disease susceptibility. J. Med. Gen. 36, 295–299 (1999).

    CAS  Google Scholar 

  52. 52

    Falconer, D.S. & Mackay, T.F.C. An Introduction to Quantitative Genetics, 4th Edition (Longman, London, 1996).

    Google Scholar 

  53. 53

    Agrawal, A. & Lively, C.M. Infection genetics: gene-for-gene versus matching allele models, and all points in between. Evol. Ecol. Res. 4, 1–12 (2002).

    Google Scholar 

  54. 54

    Taylor, L.H., Latham, S.M. & Woolhouse, M.E.J. Risk factors for human disease emergence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 983–990 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Webster, J.P. & Macdonald, D.W. Parasites of wild brown-rats (Rattus norvegicus) on UK farms. Parasitology 111, 247–255 (1995).

    PubMed  Article  Google Scholar 

  56. 56

    Read, A.F. & Taylor, L.R. The ecology of genetically diverse infections. Science 292, 1099–1102 (2001).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Ochman, H. & Moran, N.A. Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292, 1096–1098 (2001).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Fraser, C.M., Eisen, J.A. & Salzberg, S.L. Microbial gene sequencing. Nature 406, 799–803 (2000).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Lord, C.C. et al. Aggregation and distribution of strains in microparasites. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 799–807 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60

    Basanez, M.G. et al. Density-dependent processes in the transmission of human onchocerciasis—relationship between the numbers of microfilariae ingested and successful larval development in the simuliid vector. Parasitology 110, 409–427 (1995).

    PubMed  Article  Google Scholar 

  61. 61

    Woolhouse, M.E.J., Taylor, L.H. & Haydon, D.T. Population biology of multi-host pathogens. Science 292, 1109–1112 (2001).

    CAS  PubMed  Article  Google Scholar 

  62. 62

    Bohannan, B.J.M., Travisano, M. & Lenski, R.E. Epistatic interactions can lower the cost of resistance to multiple consumers. Evolution 53, 292–295 (1999).

    PubMed  Article  Google Scholar 

  63. 63

    Ebert, D. Experimental evolution of parasites. Science 282, 1432–1435 (1998).

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Weaver, S.C., Brault, A.C., Kang, W.L. & Holland J.J. Genetic and fitness changes accompanying adaptation of an arbovirus to vertebrate and invertebrate cells. J. Virol. 73, 4316–4326 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Davies, N.B. & de L. Brooke, M. An experimental study of co-evolution between the cuckoo, Cuculus canorus, and its hosts. II Host egg markings, chick discrimination and general discussion. J. Anim. Ecol. 58, 225–236 (1989).

    Article  Google Scholar 

  66. 66

    Schneider-Schaulies, J. Cellular receptors for viruses: links to tropism and pathogenesis. J. Gen. Virol. 81, 1413–1429 (2000).

    CAS  Article  PubMed  Google Scholar 

  67. 67

    Woolhouse, M.E.J. Population biology of emerging and re-emerging pathogens. Trends Microbiol. 10, S3–S7 (2002).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Baranowski, E., Ruiz-Jarabo, C.M. & Domingo, E. Evolution of cell recognition by viruses. Science 292, 1102–1105 (2001).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Stebbins, C.E. & Galan, J.E. Structural mimicry in bacterial virulence. Nature 412, 701–705 (2001).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Gilbert, S.C. et al. Association of malaria parasite population structure, HLA, and immunological antagonism. Science 279, 1173–1177 (1998).

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Slatkin, M. & Rannala, B. Estimating allele age. Ann. Rev. Genomics Hum. Genet. 1, 225–249 (2000).

    CAS  Article  Google Scholar 

  72. 72

    Altschuler, E.L. Plague as HIV vaccine adjuvant. Med. Hypotheses 54, 1003–1004 (2000).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Schliekelman, P., Garner, C. & Slatkin, M. Natural selection and resistance to HIV. Nature 411, 545–546 (2001).

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Berger, E.A., Murphy, P.M. & Farber, J.M. Chemokine receptors as HIV-1 co-receptors: roles in viral entry, tropism and disease. Ann. Rev. Immunol. 17, 657–700 (1999).

    CAS  Article  Google Scholar 

  75. 75

    Moore, C.B. et al. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 296, 1439–1443 (2002).

    CAS  PubMed  Article  Google Scholar 

  76. 76

    Day, C.L. et al. Relative dominance of epitope-specific cytotoxic T-lymphocyte responses in human immunodeficiency virus type 1-infected persons with shared HLA alleles. J. Virol. 75, 6279–6291 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Goulder, P.J.R. et al. Patterns of immunodominance in HIV-1-specific cytotoxic T lymphocyte responses in two human histocompatibility leukocyte antigens (HLA)-identical siblings with HLA-A*0201 are influenced by epitope mutation. J. Exp. Med. 185, 1423–1433 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78

    Altfeld, M. et al. Cellular immune responses and viral diversity in individuals treated during acute and early HIV-1 infection. J. Exp. Med. 193, 169–180 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79

    Bergelson, J., Kreitman, M., Stahl, E.A. & Tian, D.C. Evolutionary dynamics of plant R-genes. Science 292, 2281–2285 (2001).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Klein, J., Satta, Y., Ohuigin, C. & Takahata, N. The molecular descent of the major histocompatibility complex. Ann. Rev. Immunol. 11, 269–295 (1993).

    CAS  Article  Google Scholar 

  81. 81

    Vogel, T.U. et al. Major histocompatibility complex class I genes in primates: coevolution with pathogens. Immunol. Rev. 167, 327–337 (1999).

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Apanius, V., Penn, D., Slev, P.R., Ruff, L.R. & Potts, W.K. The nature of selection on the major histocompatibility complex. Crit. Rev. Immunol. 17, 179–224 (1997).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Yang, Z. & Bielawski, J.P. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 15, 496–503 (2000).

    CAS  Article  PubMed  Google Scholar 

  84. 84

    Vartanian, J.P., Henry, M. & Wain-Hobson, S. Simulating pseudogene evolution in vitro: determining the true number of mutations in a lineage Proc. Natl Acad. Sci. USA 98, 13172–13176 (2001).

    CAS  PubMed  Article  Google Scholar 

  85. 85

    Domingo, E., Webster, R.G. & Holland, J. Origin and Evolution of Viruses (Academic Press, San Diego, 1999).

    Google Scholar 

  86. 86

    Bush, R.M. et al. Predicting the evolution of human influenza A. Science 286, 1921–1925 (1999).

    CAS  Article  PubMed  Google Scholar 

  87. 87

    International SNP Map Working Group. A map of human genome sequence variation containing 1.42 million single-nucleotide polymorphisms. Nature 409, 928–933 (2001).

  88. 88

    Domingo, E., Biebricher, C., Eigen, M. & Holland, J.J. Quasispecies and RNA Virus Evolution: Principles and Consequences (Landes Bioscience, Landes, 2001).

    Google Scholar 

  89. 89

    Charlesworth, D., Charlesworth, B. & McVean, G. Genome sequences and molecular evolution, a two-way interaction. Trends Ecol. Evol. 16, 235–242 (2001).

    CAS  PubMed  Article  Google Scholar 

  90. 90

    Gandon, S., Mackinnon, M.J., Nee, S. & Read, A.F. Imperfect vaccines and the evolution of pathogen virulence. Nature 414, 751–756 (2001).

    CAS  PubMed  Article  Google Scholar 

  91. 91

    Woolhouse, M.E.J. & Dye, C. (eds) Population biology of emerging and re-emerging pathogens. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 979–1106 (2001).

    Article  Google Scholar 

  92. 92

    Crow, J.F. & Kimura, M. An Introduction to Population Genetics Theory (Harper and Row, New York, 1970).

    Google Scholar 

  93. 93

    Webster, J.P. & Woolhouse, M.E.J. Heritability and strain specificity in compatibility between snail intermediate hosts and their parasitic schistosomes. Evolution 52, 1627–1634 (1998).

    CAS  PubMed  Article  Google Scholar 

  94. 94

    Oppliger, A., Vernet, R. & Baez, M. Parasite local maladaptation in the Canarian lizard Gallotia galloti (Reptilia: Lacertidae) parasitized by haemogregarian blood parasite. J. Evol. Biol. 12, 951–955 (1999).

    Article  Google Scholar 

  95. 95

    Cao, W. et al. Identification of α-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282, 2079–1081 (1998).

    CAS  PubMed  Article  Google Scholar 

  96. 96

    Overbaugh, J. & Bangham, C.R.M. Selection forces and constraints on retroviral sequence variation. Science 292, 1106–1109 (2001).

    CAS  PubMed  Article  Google Scholar 

  97. 97

    Sorci, G., Moller, A.P. & Boulinier, T. Genetics of host–parasite interactions. Trends Ecol. Evol. 12, 196–200 (1997).

    CAS  PubMed  Article  Google Scholar 

  98. 98

    Helmby, H., Kullberg, M. & Troye-Blomberg, M. Altered immune responses in mice with concomitant Schistosoma mansoni and Plasmodium chabaudi infections. Infect. Immun. 66, 5167–5174 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Allen, J.E. & Maizels, R.M. Th1-Th2: reliable paradigm or dangerous dogma? Immunol. Today 18, 387–392 (1997).

    CAS  PubMed  Article  Google Scholar 

  100. 100

    Sullivan, J.T. et al. Schistosoma mansoni, NIH-SM-PR-2 strain, in non-susceptible Biomphalaria glabrata—protection by Echinostoma paraensei. Int. J. Parasitol. 11, 481–484 (1981).

    Article  Google Scholar 

  101. 101

    Stosor, V. & Wolinsky, S. GB virus C and mortality from HIV infection. N. Engl. J. Med. 345, 761–762 (2001).

    CAS  PubMed  Article  Google Scholar 

  102. 102

    Donnenberg, M.S. Pathogenic strategies of enteric bacteria. Nature 406, 768–774 (2000).

    CAS  PubMed  Article  Google Scholar 

  103. 103

    Pellizzari, A., Pang, H. & Lingwood, C.A. Binding of verocytotoxin 1 to its receptor is influenced by differences in receptor fatty acid content. Biochemistry 31, 1363–1370 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104

    McFadden, G. Getting to know you—viruses meet CD40 ligand. Nature Med. 1, 408–409 (1995).

    CAS  PubMed  Article  Google Scholar 

  105. 105

    Faure, S. et al. Rapid progression to AIDS in HIV+ individuals with a structural variant of the chemokine receptor CX(3)CR1. Science 287, 2274–2277 (2000).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Read, L. Taylor, D. Haydon, M. Charleston, R. Phillips, C. Davies, P. Goulder, C. Lively and E. Baranowski for comments and discussion and gratefully acknowledge support from the Wellcome Trust, the Leverhulme Trust, the Royal Society, Ministerio de Ciencia y Tecnologia and Fundacion R Areces.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark E. J. Woolhouse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Woolhouse, M., Webster, J., Domingo, E. et al. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 32, 569–577 (2002). https://doi.org/10.1038/ng1202-569

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing