Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The transcriptome of Arabidopsis thaliana during systemic acquired resistance

Abstract

Infected plants undergo transcriptional reprogramming during initiation of both local defence and systemic acquired resistance (SAR). We monitored gene-expression changes in Arabidopsis thaliana under 14 different SAR-inducing or SAR-repressing conditions using a DNA microarray representing approximately 25–30% of all A. thaliana genes. We derived groups of genes with common regulation patterns, or regulons. The regulon containing PR-1, a reliable marker gene for SAR in A. thaliana, contains known PR genes and novel genes likely to function during SAR and disease resistance. We identified a common promoter element in genes of this regulon that binds members of a plant-specific transcription factor family. Our results extend expression profiling to definition of regulatory networks and gene discovery in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unrooted tree of relatedness of transcriptional changes across SAR-relevant conditions.
Figure 2: a, Clustergram of 413 ESTs differentially expressed during SAR.
Figure 3: Self-organizing map clusters of expression profiles.
Figure 4: W box motifs in PR-1 cluster genes.
Figure 5: Cis element architecture in the PR-1 cluster.

Similar content being viewed by others

References

  1. Somssich, I.E. & Halbrock, K. Pathogen defense in plants–a paradigm of biological complexity. Trends Plant Sci. 3, 86–90 ( 1998).

    Article  Google Scholar 

  2. Ryals, J.L. et al. Systemic acquired resistance. Plant Cell 8, 1809–1819 (1996).

    Article  CAS  Google Scholar 

  3. Dong, X. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1, 316–323 ( 1998).

    Article  CAS  Google Scholar 

  4. Vernooij, B. et al. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance, but is required in signal transduction . Plant Cell 6, 959–965 (1994).

    Article  CAS  Google Scholar 

  5. Delaney, T. et al. A central role of salicylic acid in plant disease resistance . Science 266, 1247–1250 (1994).

    Article  CAS  Google Scholar 

  6. Lawton, K. et al. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10, 71– 82 (1996).

    Article  CAS  Google Scholar 

  7. Lebel, E. et al. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J. 16, 223–233 (1998).

    Article  CAS  Google Scholar 

  8. Bowling, S.A. et al. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell 6, 1845–1857 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dangl, J.L., Dietrich, R.A. & Richberg, M.H. Death don't have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8, 1793–1807 (1996).

    Article  CAS  Google Scholar 

  10. Cao, H., Bowling, S.A., Gordon, S. & Dong, X. Characterization of an Arabidopsis mutant that is non-responsive to inducers of systemic acquired resistance. Plant Cell 6, 1583–1592 (1994).

    Article  CAS  Google Scholar 

  11. Delaney, T.P., Friedrich, L. & Ryals, J.A. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance . Proc. Natl Acad. Sci. USA 92, 6602– 6606 (1995).

    Article  CAS  Google Scholar 

  12. Depres, D., DeLong, C., Glaze, S., Liu, E. & Fobert, P.R. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors . Plant Cell 12, 279–290 (2000).

    Article  Google Scholar 

  13. Li, X., Zhang, Y., Clarke, J.D., Li, Y. & Dong, X. Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1. Cell 98, 329– 339 (1999).

    Article  CAS  Google Scholar 

  14. Zhang, Y., Fan, W., Kinkema, M., Li, X. & Dong, X. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc. Natl Acad. Sci. USA 96, 6523–6528 (1999).

    Article  CAS  Google Scholar 

  15. Zhou, J.-M. et al. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol. Plant Microbe Interact. 13, 191–202 ( 2000).

    Article  CAS  Google Scholar 

  16. Maleck, K. & Dietrich, R.A. Defense on multiple fronts: how do plants cope with diverse enemies? Trends Plant Sci. 4, 215–219 ( 1999).

    Article  CAS  Google Scholar 

  17. White, K., Rifkin, S., Hurban, P. & Hogness, D. Microarray analysis of Drosophila development during metamorphosis. Science 286, 2179–2184 (1999).

    Article  CAS  Google Scholar 

  18. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray . Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  19. Cao, H., Li, X. & Dong, X. Generation of broad spectrum disease resistance by over-expression of an essential regulatory gene in systemic acquired resistance. Proc. Natl Acad. Sci. USA 95, 6531–6536 ( 1998).

    Article  CAS  Google Scholar 

  20. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863– 14868 (1998).

    Article  CAS  Google Scholar 

  21. Tamayo, P. et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl Acad. Sci. USA 96, 2907– 2912 (1999).

    Article  CAS  Google Scholar 

  22. Uknes, S. et al. Biological induction of systemic acquired resistance in Arabidopsis . Mol. Plant Microbe Interact. 6, 692 –698 (1993).

    Article  Google Scholar 

  23. Oh, S.A., Lee, S.Y., Chung, I.K., Lee, C.H. & Nam, H.G. A senescence-associated gene of Arabidopsis thaliana is distinctively regulated during natural and artificially induced leaf senescence . Plant Mol. Biol. 30, 739– 754 (1996).

    Article  CAS  Google Scholar 

  24. Park, J.H., Oh, S.A., Kim, Y.H., Woo, H.R. & Nam, H.G. Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescence-inducing factors in Arabidopsis. Plant Mol. Biol. 37, 445– 454 (1998).

    Article  CAS  Google Scholar 

  25. Quirino, B.F., Normanly, J. & Amasino, R.M. Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen independent induction of defense-related genes. Plant Mol. Biol. 40, 267–278 (1999).

    Article  CAS  Google Scholar 

  26. Eulgem, T., Rushton, P.J., Robatzek, S. & Somssich, I.E. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5, 199–206 ( 2000).

    Article  CAS  Google Scholar 

  27. Schindler, U., Beckmann, H. & Cashmore, A.R. TGA1 and G-box binding factors: two distinct classes of Arabidopsis leucine zipper proteins compete for the G-box-like element TGACGTGG. Plant Cell 4, 1309– 1319 (1992).

    Article  CAS  Google Scholar 

  28. Eulgem, T., Rushton, P.J., Schmelzer, E., Hahlbrock, K. & Somssich, I.E. Early nuclear events in plant defence signalling: rapid activation by WRKY transcription factors . EMBO J. 18, 4689–4699 (1999).

    Article  CAS  Google Scholar 

  29. Fukuda, Y. Interaction of tobacco nuclear proteins with an elicitor responsive element in the promoter of a basic class I chitinase gene. Plant Mol. Biol. 34, 81–87 ( 1997).

    Article  CAS  Google Scholar 

  30. Rushton, P.J. et al. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J. 15, 5690–5700 ( 1996).

    Article  CAS  Google Scholar 

  31. Durrant, W.E., Rowland, O., Piedras, P., Hammond-Kossak, K.E. & Jones, J.D.G. cDNA-AFLP reveales a striking overlap in the race-specific resistance and wound response expression profiles. Plant Cell 12, 963– 977 (2000).

    Article  CAS  Google Scholar 

  32. Neuenschwander, U. et al. Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? Plant J. 8, 227–234 (1995).

    Article  CAS  Google Scholar 

  33. Bi, Y.-M., Kenton, P., Mur, L., Darby, R. & Draper, J. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J. 8, 235–246 ( 1995).

    Article  CAS  Google Scholar 

  34. Lamb, C. & Dixon, R.A. The oxidative burst in plant disease resistance. Annu. Rev. Physiol. Plant Mol. Biol. 48, 251–275 ( 1997).

    Article  CAS  Google Scholar 

  35. Jabs, T., Dietrich, R.A. & Dangl, J.L. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273, 1853–1856 (1996).

    Article  CAS  Google Scholar 

  36. Dietrich, R.A. et al. Arabidopsis mutants simulating disease resistance response . Cell 77, 565–578 (1994).

    Article  CAS  Google Scholar 

  37. Batz, O., Logemann, E., Reinold, S. & Hahlbrock, K. Extensive reprogramming of primary and secondary metabolism by fungal elicitor or infection in parsley cells. Biol. Chem. 379, 1127–1135 (1998).

    Article  CAS  Google Scholar 

  38. Marcotte, E.M., Pellegrini, M., Thompson, M.J., Yeates, T.O. & Eisenberg, D. A combined algorithm for genome-wide prediction of protein function. Nature 402, 83–86 ( 1999).

    Article  CAS  Google Scholar 

  39. Glazebrook, J., Rogers, E.E. & Ausubel, F.M. Use of Arabidopsis for genetic dissection of plant defense responses. Annu. Rev. Genet. 31, 547–569 (1997).

    Article  CAS  Google Scholar 

  40. Wolter, M., Hollricher, K., Salamini, F. & Schulze-Lefert, P. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype. Mol. Gen. Genet. 239, 122–128 ( 1993).

    CAS  PubMed  Google Scholar 

  41. Delseny, M., Cooke, R., Raynal, M. & Grellet, F. The Arabidopsis thaliana cDNA sequencing projects. FEBS Lett. 403, 221–224 (1997).

    Article  CAS  Google Scholar 

  42. Ruan, Y., Gilmore, J. & Conner, T. Towards Arabidopsis genome analysis: monitoring exprssion profiles of 1400 genes using cDNA microarrays. Plant J. 15, 821–833 (1997).

    Article  Google Scholar 

  43. Felsenstein, J. PHYLIP, Phylogeny Inference Package (Version 3.2). Cladistics 5, 164–166 (1989).

    Google Scholar 

  44. Menkens, A.E., Schindler, U. & Cashmore, A.R. The G-box: a ubiquitious regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem. Sci. 20, 506–510 (1995).

    Article  CAS  Google Scholar 

  45. Dröge-Laser, W. et al. Rapid stimulation of a soybean protein serine-threonine kinase which phosphorylates a novel bZIP DNA-binding protein, G/HBF-1, during the induction of early transcription-dependent defenses. EMBO J. 16, 726–738 (1997).

    Article  Google Scholar 

  46. Hao, D., Ohme-Takagi, M. & Sarai, A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant . J. Biol. Chem. 273, 26857– 26861 (1998).

    Article  CAS  Google Scholar 

  47. Menke, F.L.H., Champion, A., Kijne, J.W. & Memelink, J. A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J. 18, 4455–4463 (1999).

    Article  CAS  Google Scholar 

  48. Solano, R., Stepanova, A., Chao, Q. & Ecker, J.R. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 12, 3703–3714 (1998).

    Article  CAS  Google Scholar 

  49. Yang, Y. & Klessig, D.F. Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco . Proc. Natl Acad. Sci. USA 93, 14972– 14977 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Rushton and I. Somssich for discussion; L. Friedrich, J. Levin and F. Zheng for RNA samples; A. Wiig for technical assistance; P. Epple for critical reading of the manuscript; the ABRC for EST clones; and S.Y. Rhee for calculation of average 5′ UTR lengths in A. thaliana genes. A.L. was supported by an REU supplement to NSF grant IBN-9724075 to J.L.D., and T.E. is the recipient of a Deutsche Forschungsgemeinschaft Post-doctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffery L. Dangl.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maleck, K., Levine, A., Eulgem, T. et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26, 403–410 (2000). https://doi.org/10.1038/82521

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82521

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing