Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic evidence for a higher female migration rate in humans


Mitochondrial DNA and the Y chromosome have been used extensively in the study of modern human origins and other phylogenetic questions, but not in the context of their sex-specific modes of transmission. mtDNA is transmitted exclusively by females, whereas the Y chromosome is passed only among males. As a result, differences in the reproductive output or migration rate of males and females will influence the geographic patterns and relative level of genetic diversity on the Y chromosome, autosomes and mtDNA (ref. 1 ). We have found that Y chromosome variants tend to be more localized geographically than those of mtDNA and the autosomes2,5. The fraction of variation within human populations for Y chromosome single nucleotide polymorphisms (SNPs) is 35.5%, versus 80–85% for the autosomes and mtDNA (refs 6, 7, 8 ). A higher female than male migration rate ( via patrilocality, the tendency for a wife to move into her husband's natal household) explains most of this discrepancy, because diverse Y chromosomes would enter a population at a lower rate than mtDNA or the autosomes. Polygyny may also contribute, but the reduction of variation within populations that we measure for the Y chromosome, relative to the autosomes and mitochondrial DNA, is of such magnitude that differences in the effective population sizes of the sexes alone are insufficient to produce the observation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regressions of genetic distance (FST) onto geographic distance (km) in Europe.


  1. Salem, A.H., Badr, F.M., Gaballah, M.F. & Paabo, S. The genetics of traditional living: Y-chromosomal and mitochondrial lineages in the Sinai Peninsula. Am. J. Hum. Genet. 59, 741–743 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Seielstad, M.T. et al. Construction of human Y-chromosomal haplotypes using a new polymorphic A to G transition. Hum. Mol. Genet. 3, 2159–2161 (1994).

    Article  CAS  Google Scholar 

  3. Ruiz-Linares, A. et al. Geographic clustering of human Y-chromosome haplotypes. Ann. Hum. Genet. 60, 401– 408 (1996).

    Article  CAS  Google Scholar 

  4. Underhill, P.A., Jin, L., Zemans, R., Oefner, P.J. & Cavalli-Sforza, L.L. A pre-Columbian Y chromosome-specific transition and its implications for human evolutionary history. Proc. Natl Acad. Sci. USA 93, 196–200 (1996).

    Article  CAS  Google Scholar 

  5. Underhill, P.A. et al. Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography. Genome Res. 7, 996–1005 (1997).

    Article  CAS  Google Scholar 

  6. Lewontin, R.C. The apportionment of human diversity. Evol. Biol. 6, 381–398 (1972).

    Google Scholar 

  7. Barbujani, G., Magagni, A., Minch, E. & Cavalli-Sforza, L.L. An apportionment of human DNA diversity. Proc. Natl Acad. Sci. USA 94, 4516–4519 (1997).

    Article  CAS  Google Scholar 

  8. Excoffier, L., Smouse, P.E. & Quattro, J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479– 491 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cavalli-Sforza, L.L. & Bodmer, W.F. The Genetics of Human Populations (Freeman, San Francisco, 1971).

    Google Scholar 

  10. Miyata, T. et al. Molecular clock of silent substitution: at least six-fold preponderance of silent changes in mitochondrial genes over those in nuclear genes. J. Mol. Evol. 19, 28– 35 (1982).

    Article  CAS  Google Scholar 

  11. Hammer, M.F. A recent common ancestry for human Y chromosomes. Nature 378, 376–378 (1995).

    Article  CAS  Google Scholar 

  12. Wijsman, E.M. & Cavalli-Sforza, L.L. Migration and genetic population structure with special reference to humans. Annu. Rev. Ecol. Syst. 15, 279–301 (1984).

    Article  Google Scholar 

  13. Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Feldman, M.W., Kumm, J. & Pritchard, J.K. Mutation and migration in models of microsatellite evolution. in Microsatellites, Evolution and Applications (eds Goldstein, D.J. & Schloetterer, C.) (Oxford University Press, Oxford, in press).

  15. Thomas, J.M.C. Les Ngbaka de la Lobaye (Mouton, The Hague, 1963).

    Google Scholar 

  16. White, D.R. Rethinking polygyny. Curr. Anthropol. 29, 529–572 (1988).

    Article  Google Scholar 

  17. Dorjahn, V. R. in Continuity and Change in African Culture (eds Herskovits, M.J. & Bascomb, W.R.) 87–112 (University of Chicago Press, Chicago, 1959).

    Google Scholar 

  18. Hrdlicka, A. Fecundity in Sioux women. Am. J. Phys. Anthropol. 16, 81–90 (1931).

    Article  Google Scholar 

  19. Isaac, B. Female fertility and marital form among the Mende of rural Upper Bambara Chiefdom, Sierra Leone. Ethnology 19, 297– 313 (1980).

    Article  Google Scholar 

  20. Hewlett, B., van de Koppel, J.M.H. & Cavalli-Sforza, L.L. Exploration ranges of Aka Pygmies of the Central African Republic. Man 17, 418–430 (1982).

    Article  Google Scholar 

  21. Ember, C.R. Myths about hunter-gatherers. Ethnology 17, 439–448 (1978).

    Article  Google Scholar 

  22. Burton, M.L., Moore, C.C., Whiting, J.W.M. & Romney, A.K. Regions based on social structure. Curr. Anthropol. 37, 87–123 (1996).

    Article  Google Scholar 

  23. Murdock, G. P. Ethnographic Atlas (University of Pittsburgh Press, Pittsburgh, 1967).

    Google Scholar 

  24. Melnick, D.J. & Hoelzer, G.A. Differences in male and female macaque dispersal lead to contrasting distributions of nuclear and mitochondrial DNA variation. Int. J. Primatol. 13, 379–393 (1992).

    Article  Google Scholar 

  25. Keane, B., Dittus, W.P.J. & Melnick, D.J. Paternity assessment in wild groups of toque macaques Macaca sinica at Polonnaruwa, Sri Lanka using molecular markers. Mol. Ecol. 6, 267–282 (1997).

    Article  CAS  Google Scholar 

  26. Miller, S.A., Dykes, D.D. & Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nuceic Acids Res. 16, 1215 (1988).

    Article  CAS  Google Scholar 

  27. Schneider, S., Kueffer, J. M., Roessli, D. & Excoffier, L. Arlequin ver. 1.1, University of Geneva (1997).

    Google Scholar 

  28. Semino, O., Passarino, G., Brega, A., Fellous, M. & Santachiara-Benerecetti, A.S. A view of the Neolithic demic diffusion in Europe through two Y chromosome-specific markers. Am. J. Hum. Genet. 59, 964–968 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Richards, M. et al. Paleolithic and Neolithic lineages in the European mitochondrial gene pool. Am. J. Hum. Genet. 59, 185– 203 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cavalli-Sforza, L.L., Menozzi, P. & Piazza, A. The History and Geography of Human Genes (Princeton University Press, Princeton, New Jersey, 1994).

    Google Scholar 

Download references


We thank all the DNA donors who participated in this project. Laboratory work was funded by NIH grant GM28428 to L.L.C.-S. The collection of DNA samples in Ethiopia, Sudan and Mali was supported by the Arthur Green Fund of Harvard University and the L.S.B. Leakey Foundation, with the assistance of E. Bekele, M. Ibrahim, M. Traoré and A. Touré. M.T.S. was a U.S. National Science Foundation Predoctoral Fellow. We thank M. Feldman for helpful advice and discussion.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mark T. Seielstad.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seielstad, M., Minch, E. & Cavalli-Sforza, L. Genetic evidence for a higher female migration rate in humans. Nat Genet 20, 278–280 (1998).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing