Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expression patterns of predicted genes from the C. elegans genome sequence visualized by FISH in whole organisms

Abstract

More than 10 megabases of contiguous genome sequence have been submitted to the databases by the Caenorhabditis elegans Genome Sequencing Consortium. To characterize the genes predicted from the sequence, we have developed high resolution FISH for visualization of mRNA distributions in whole animals. The high resolution and sensitivity afforded by the use of directly fluorescently labelled probes and confocal imaging permitted mRNA distributions to be recorded at the cellular and subcellular level. Expression patterns were obtained for 8 out of 10 genes in an initial test set of predicted gene sequences, indicating that FISH is an effective means of characterizing predicted genes in C. elegans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Coulson, A., Sulston, J., Brenner, S. & Karn, J. Towards a physical map of the genome of the nematode Caenorhabditis elegans. Proc. natn. Acad. Sci. U.S.A. 83, 7821–7825 (1986).

    Article  CAS  Google Scholar 

  2. Coulson, A., Waterston, R., Kiff, J., Sulston, J. & Kohara, Y. Genome linking with yeast artificial chromosomes. Nature 335, 184–186 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Sulston, J. et al. The C. elegans genome sequencing project: a beginning. Nature 356, 37–41 (1992).

    Article  PubMed  Google Scholar 

  4. Wilson, R.K. et al. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 368, 32–38 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Sulston, J.E. & Horvitz, H.R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Devl. Biol. 56, 110–156 (1977).

    Article  CAS  Google Scholar 

  6. Kimble, J. & Hirsh, D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Devl. Biol. 70, 396–417 (1979).

    Article  CAS  Google Scholar 

  7. Sulston, J.E., Albertson, D.G. & Thomson, J.N. The Caenorhabditis elegans male: postembryonic development of nongonadal sructures. Devl. Biol. 78, 542–676 (1980).

    Article  CAS  Google Scholar 

  8. Sulston, J.E., Schierenberg, E., White, J.G. & Thomson, J.N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Devl. Biol. 100, 64–119 (1983).

    Article  CAS  Google Scholar 

  9. Hill, D.P. & Wurst, W. Gene and enhancer trapping: Mutagenic strategies for developmental studies. Curr. Topics dev. Biol. 28, 181–205 (1993).

    Article  CAS  Google Scholar 

  10. Hope, I.A. “Promoter trapping” in Caenorhabditis elegans. Development 113, 399–408 (1991).

    CAS  PubMed  Google Scholar 

  11. Lynch, A.S., Briggs, D. & Hope, I.A. Developmental expression pattern screen for genes predicted in the C. elegans genome sequencing project. Nature Genet. 11, 309–313 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Spieth, J., Brooke, G., Kuersten, S., Lea, K. & Blumenthal, T. Operons in C. elegans: polycistronic mRNA precursors are processed by trans-splicing of SL2 to downstream coding regions. Cell 73, 521–532 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Zorio, D.A.R., Cheng, N.N., Blumenthal, T. & Spieth, J. Operons as a common form of chromosomal organization in C. elegans. Nature 372, 270–572 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Lawence, J.B., Singer, R.H. & Marselle, L.M. Highly organized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57, 493–502 (1989).

    Article  Google Scholar 

  15. Dirks, R.W. van de Rijke, F.M., Fujishita, S., van der Ploeg, M. & Raap, A.K. Methodologies for specific intron and exon RNA localization in cultured cells by haptenized and fluorochromatized probes. J. Cell Sci. 104, 1187–1197 (1993).

    CAS  PubMed  Google Scholar 

  16. MacPhee, D.J., Barr, K.J., DeSousa, P.A., Todd, S.D.L. & Kidder, G. Regulation of Na+, K+-ATPase subunit gene expression during mouse preimplantation development. Devl. Biol. 162, 259–266 (1994).

    Article  CAS  Google Scholar 

  17. Chuang, P.-T., Albertson, D.G. & Meyer, B.J. DPY-27: a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell 79, 459–474 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Waterston, R.H., The Nematode, Caenorhabditis elegans. (ed. Wood, W.B.) 281–335 (Cold Spring Harbor, New York, 1988).

    Google Scholar 

  19. Kimble, J. & Sharrock, W.J. Tissue-specific synthesis of yolk proteins in Caenorhabditis elegans. Devl. Biol. 96, 189–196 (1983).

    Article  CAS  Google Scholar 

  20. Schedin, P., Hunter, C.P. & Wood, W.B. Autonomy and nonautonomy of sex determination in triploid intersex mosaics of C. elegans. Development 112, 833–879 (1991).

    Google Scholar 

  21. Klass, M., Dow, B. & Herndon, M. Cell-specific transcriptional regulation of the major sperm protein from Caenorhabditis elegans. Devl. Biol. 93, 152–164 (1982).

    Article  CAS  Google Scholar 

  22. Ward, S. & Klass, M. The location of the major protein in Caenorhabditis elegans sperm and spermatocytes. Devl. Biol. 92, 203–208 (1982).

    Article  CAS  Google Scholar 

  23. Mitani, S., Du, H., Hall, D.H., Driscoll, M. & Chalfie, M. Combinatorial control of touch receptor neuron expression in Caenorhabditis elegans. Development 119, 773–783 (1993).

    CAS  PubMed  Google Scholar 

  24. Wilhelm, J.E. & Vale, R.D. RNA on the move: the mRNA localization pathway. J. Cell Biol. 123, 269–274 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Okita, T.W., Li, X. & Roberts, M.W. Targeting of mRNAs to domains of the endoplasmic reticulum. Trends Cell Biol. 4, 91–95 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Fire, A., Albertson, D., Harrison, S.W. & Moerman, D.G. Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle. Development 113, 503–514 (1991).

    CAS  PubMed  Google Scholar 

  27. Singh, R.N. & Sulston, J.E. Some observations on moulting in Caenorhabditis elegans. Nematlogia 24, 63–71 (1978).

    Article  Google Scholar 

  28. Golden, J.W. & Riddle, D.L., The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Devl. Biol. 102, 368–378 (1984).

    Article  CAS  Google Scholar 

  29. Ward, S., Thomson, N., White, J.G. & Brenner, S. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J. comp. Neur. 160, 313–338 (1975).

    Article  CAS  PubMed  Google Scholar 

  30. Ware, R.W., Clark, D., Crossland, K. & Russell, R.L. The nerve ring of the nematode Caenorhabditis elegans: sensory input and motor output. J. comp. Neur. 162, 71–110 (1975).

    Article  Google Scholar 

  31. Albertson, D.G. & Thomson, J.N. The pharynx of Caenorhabditis elegans. Phil. Trans. R. Soc. B 275, 299–325 (1976).

    Article  CAS  PubMed  Google Scholar 

  32. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure of the ventral nerve cord of Caenorhabditis elegans. Phil. Trans. R. Soc. B 275, 327–348 (1976).

    Article  CAS  PubMed  Google Scholar 

  33. White, J. The anatomy. In The Nematode, Caenorhabditis elegans. (ed. Wood, W.B.), 81–122 (Cold Spring Harbor, New York, 1988).

    Google Scholar 

  34. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. B 314, 1–340 (1986).

    Article  CAS  PubMed  Google Scholar 

  35. Ainger, K. et al. Transport and localization of exogenous myelin basic protein mRNA microinjected into oligodendrocytes. J. Cell Biol. 123, 431–441 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Steward, O. & Banker, G.A. Getting the message from the gene to the synapse: sorting and intracellular transport of RNA in neurons. TINS 15, 180–186 (1992).

    CAS  PubMed  Google Scholar 

  37. Eddy, S.R. & Durbin, R. RNA sequence analysis using covariance models. Nucl. Acids Res. 22, 2079–2088 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rosbach, M. & Singer, R.H. RNA travel: tracks from DNA to cytoplasm. Cell 75, 399–401 (1993).

    Article  Google Scholar 

  39. Albertson, D.G. Mapping muscle protein genes by in situ hybridization using biotin-labelled probes. EMBO J. 4, 2493–2498 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Albertson, D.G., Fishpool, R., Sherrington, P., Nacheva, E. & Milstein, C. Sensitive and high resolution in situ hybridization to human chromosomes using biotin labelled probes: assignment of the human thymocyte CD1 antigen genes to chromosome 1. EMBO J. 7, 2801–2805 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zwaal, R.R., Broeks, A., Van Meurs, J., Groenen, J.T.M. & Plasterk, R.H.A. Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. Proc. natn. Acad. Sci. U.S.A. 90, 7431–7435 (1993).

    Article  CAS  Google Scholar 

  42. Files, J.G. & Hirsh, D. Ribosomal DNA of Caenorhabditis elegans. J. molec. Biol. 149, 223–240 (1981).

    Article  CAS  PubMed  Google Scholar 

  43. Albertson, D.G., Fishpool, R.M. & Birchall, P.S. (1995). Fluorescent in situ hybridization for the detection of DNA and RNA. In Methods in Cell Biology, vol 48. (eds Shakes, D. & Epstein, H.), 339–364 (Academic Press, San Diego, 1995).

    Google Scholar 

  44. Tautz, D. & Pfeiffle, C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81–85 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Wood, W.B. Introduction to C. elegans Biology. In The Nematode, Caenorhabditis elegans. (ed. Wood, W.B.), 1–16 (Cold Spring Harbor, New York, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birchall, P., Fishpool, R. & Albertson, D. Expression patterns of predicted genes from the C. elegans genome sequence visualized by FISH in whole organisms. Nat Genet 11, 314–320 (1995). https://doi.org/10.1038/ng1195-314

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1195-314

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing